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IntroductionIntroduction

Studies of Rydberg electronic energy states of ZnArZnAr and ZnZn22 van der Waals (vdW) complexes are presented. Ab-initio calculated Rydberg-state interatomic potentials and transition 
dipole moments (TDM) for ZnArZnAr [1,2] (Figs. 1a and 1b) and ZnZn22  [2,3] (Figs. 2a and 2b) have been used to simulate LIF excitation and emission spectra to and from selectively 
excited vibrational levels, respectively. The aim is to assess the optimal schemes for the excitation of the higher-lying (Rydberg) electronic energy states using optical-optical double 
resonance (OODR) method. Up to date, ab initio calculations of Czuchaj et al. [1] and Krośnicki [2] have been devoted to Rydberg electronic energy states of ZnRg correlating with 
the 53S1  and 53S0  atomic asymptotes, while only one, namely the E3Σ1(53S1), Rydberg state of ZnArZnAr  was experimentally investigated by Bennett and Breckenridge [4] using 
vaporization-optical excitation in a supersonic beam. For ZnZn22, despite availability of lowest-lying Rydberg state potentials [2,3], no attempt has been made so far to investigate them 
using OODR and the supersonic beam technique.

Our experimental procedure (Fig. 4) uses OODR scheme to excite, in general, all ZnRgZnRg (Rg=rare gas atom) and ZnZn22 complexes employing newly constructed supersonic molecular 
beam apparatus for highly invasive elements. It is well known that Zn is an aggressive element, especially in high temperatures, and a special effort has to be made to avoid 
unwanted deterioration of the beam source. 

The goal of the study is to perform theory-to-experiment-comparison investigation for the lower-lying Rydberg states of ZnArZnAr and ZnZn22 followed by as complete as possible studies of 
the whole ZnRgZnRg and (ZnZn22-CdCd22 [5]-HgHg22 [6]) groups of complexes. New ab initio calculations of ZnArZnAr and ZnZn22 Rydberg-state interatomic potentials are underway in our laboratory [7]. 
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Fig. 3. Examples of simulated LIF excitation (upper part, LEVEL 
[8] and Pgopher [10]) and emission (lower part, BCONT [9]) 
spectra in ZnArZnAr  using ab-initio  calculated potentials [2]: the 
E31,υ′ ← C11,υ″=4  (upper part) and E31,υ′=12 → a30−, A30+, 
B31, c31, d30−, X10+ (lower part).
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Fig. 5.  Examples of simulated LIF ZnZn22  excitation spectrum of 

the 31g,υ′ ← b30u
+,υ″=1  2nd-step transition  (upper part), and 

experimental and simulated excitation spectrum of the b30u
+,υ′' 

← X10g
+,υ=0  1st-step transition  with several vibrational bands 

simulated taking account the isotope and rotational energy 
structures (lower part). LEVEL [8] and Pgopher [10] were used.
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Fig. 4. New source module of a molecular beam devoted to production 
of internally cooled molecules that consist of highly aggressive 
elements (here, Zn). Patent application in Republic of Poland 
(P.428617).
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Fig. 1. (a) Ab-initioAb-initio  calculated calculated  ZnArZnAr  interatomic potentials 
showing two E31 and F10+ lower-lying Rydberg electronic energy 
states correlating with the 53S1  and 51S0  atomic asymptotes, 
respectively, and their possible OODR excitation from the X10+ 
via  intermediate C11(41P1)  or A30+(43P1)  states. Excitation 
wavelengths in (nm). (b)  TDMTDM22(R)(R)   for several 1st-step 
transitions.
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