

Jagiellonian University Krakow

Molecular Laser Spectroscopy Group **Krakow**

ATOMic Scale Science for **IN**novative Economy

a *Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland* b *Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland* † e-mail: ufkopers@cyf-kr.edu.pl

Financed from funds for science of Polish Ministry of Science and Higher Education (project N N202 2137 33)

Vibrational and isotopic structures of highly excited $C^31_u(6^3S_1)$ and $D^1O_u^+(6^1S_0)$ electronic energy states of Cd₂ (see Fig. 2) were extensively investigated in cold environment of a free-jet expansion beam. Laser induced fluorescence excitation spectra were recorded in the ultraviolet region (206-218 nm *i.e.*, 48530-45860 cm-1) using the **C³1^u** ←**X¹0^g ⁺** and **D¹0^u ⁺**←**X¹0^g +** bound←bound transitions.

IRREGULARITIES IN HIGHLY EXCITED $ENERGY STATES OF Cd₂:$ **EXPERIMENT** *VS***.** *AB INITIO* **CALCULATIONS - FIRST STEP TOWARDS AN ENTANGLEMENT OF Cd ATOMS**

INTRODUCTION

The measured spectra provided characteristics of the $\textbf{C}^3 \textbf{1}_{\sf u}$ and $\textbf{D}^1 \textbf{0}_{\sf u}^{}$ -state potentials. At the present stage, it is concluded that the shape of the potential of the experimentally determined C^31_u excited state $[D_e' (C^31_u)$ =10085 cm-1 , *R^e '*(**C 3 1u**)=2.68 Å] is close to the result of our *ab initio* calculations. However, for the singlet excited state [*D^e '*(**D 1 0u +**)=6569 cm-1 , R_e ['](D^10_u ⁺)=3.54 Å] the above statement is not true - the experiment gives result far from the *ab-initio* calculated one (Fig. 4).

Beside the bound←bound transitions, part of the excitation spectrum *i.e.*, region of 207-208 nm, incorporates features that may indicate a presence of free←bound transitions (see Fig 3). To explain the recorded signal, we assumed proximity of the E^31_u -state potential that correlates with the 6^3P_1 Rydberg atomic asymptote lying above the 6^3S_1 and 6^1S_0 levels (see Fig. 2), similarly as reported for the case of $Hg_{_2}$ [1].

The reported experiment constitutes part of our activity focused on studies of interatomic potentials of ZnRg, CdRg (Rg=rare gas), Zn₂ and Cd₂ van der Waals complexes [2], aiming at a mechanisms of molecular internal vibrational cooling as well as experimental verification of Bell's inequality for a pair of neutral Cd atoms "born" in a controlled dissociation of Cd₂ molecule in an expansion beam [3]. An idea of the proposal – based on that of Fry and coworkers [9] for Hg $_{\rm 2}$ - is briefly presented below. The experimental apparatus is presently in a preparation stage in our laboratory.

Fig. 1. Scheme of the experimental set-up: **FCU** – **F**requency **C**onversion **U**nit, **L** – **L**enses, **OG** – Argon-filled **O**pto**G**alvanic cell, **PD1**, **PD2** – **P**hoto**D**iodes, **FP** – **F**abry-**P**erot etalon, **PM** – **P**hoto**M**ultiplier tube. Perpendicular direction between direction of the detection and a plane containing laser and molecular beams allows reducing a Doppler broadening.

The knowledge on the Cd₂ interatomic potentials (Fig.4) is essential with respect to the planned experiment aiming at a verification of Bell's inequality for a pair of neutral 111 Cd atoms "born" in a controlled dissociation of 111 Cd₂ molecules in a free-jet expansion beam [3].

Fig. 2. Interatomic potentials of Cd₂ drawn for the **X 10g +** ground as well as the excited *ungerade* (solid lines) and *gerade* states (dotted lines) correlating with the $5^{3}P_{J=0,1,2}$, $5^{1}P_{1}$, $6^{3}S_{1}$, $6^{1}S_{0}$ and $6³P₁$ atomic asymptotes. The potentials are the result of *ab initio* calculations performed using a CASSCF/CASPT2 method. Vertical thin arrows indicate electronic transitions from the ground to the **a ³1^u** [4], **b30^u +** [2], **c ³1^u** [5], **A10^u +** [6,7] and **B11^u** [8] *ungerade* excited states that were investigated in our laboratory in the past. Vertical thick arrows depict electronic transitions from the ground to the **C31^u** and **D10^u +** *ungerade* excited states reported here. The **E31^u** Rydberg state is also shown.

Ab initio **calculations.** 20 electrons of Cd were treated explicitly while the rest *i.e.*, core electrons were replaced by effective core pseudopotential originated from Stuttgart group. In the calculations an augmented correlation-consistent polarized valence 5-zeta (aug-ccpV5Z) atomic basis set was

used. In order to calculate electronic potentials a complete-active-space multireference secondorder perturbation method (CASPT2) was used. The CASPT2 eigenenergies were employed in the subsequent spin-orbit (S-O) calculations as diagonal elements of the S-O matrix but the offdiagonal elements of the S-O operator were calculated using reference wavefunctions taken from the state averaged complete-active-space multiconfiguration self-consisted field CASSCF calculations.

REFERENCES:

[1] F.H. Mies, J. Stevens and M. Krauss, *J. Mol. Spectrosc.* **72**, 303 (1978).

[2] J. Koperski, *Phys. Reports* **369**, 177 (2002).

[3] J. Koperski and E.S. Fry, *J. Phys. B: At. Mol. Opt. Phys.* **39**, S1125 (2006).

[4] M. Łukomski, M. Ruszczak, E. Czuchaj and J. Koperski, *Spectrochim. Acta A* **61**, 1835 (2005).

[5] J. Koperski, M. Łukomski and M.Czajkowski, *Spectrochim. Acta A* **58**, 927 (2002).

[6] M. Łukomski, J. Koperski, E. Czuchaj and M. Czajkowski, *Phys. Rev. A* **68**, 42508 (2003); Erratum, *ibid.* **69**, 49901(E) (2004).

[7] M. Łukomski and J. Koperski, *Chem. Phys. Lett.* **384**, 317 (2004).

[8] M. Ruszczak, M. Strojecki, M. Łukomski and J. Koperski, *J. Phys. B: At. Mol. Opt. Phys.*, **41**, 245101 (2008).

[9] E.S. Fry, Th. Walther and S. Li, *Phys. Rev. A* **52**, 4381 (1995).

M. STROJECKIª, M. KROŚNICKIʰ, <u>J. KOPERSKI</u>ª^{,†}

Fig. 4. Theory *vs.* **experiment**: a comparison between the Cd₂ interatomic potentials *ab-initio* calculated using a CASSCF/CASPT2 method (dashed lines) with those obtained experimentally in our laboratory in the past [2,4-8] as well as reported here (solid lines). As can be seen, for the **A10^u +** , **B11^u** and **C31^u** states the theory-to-experiment agreement is satisfactory. Case of the **D10^u +** state is somewhat different: the experiment gives strong evidence that the **D10^u +** -state potential well is much shallower than that obtained as a result of the calculations. An explanation of this disagreement remains an open question. Some possibility offers the **E31^u** Rydberg state which - having considerably deep potential well reaching the **C31^u** and **D10^u +** -state energy regions may influence the excitation from the ground state. The energy regions investigated in the experiment are depicted with thick bars on the vertical

RESULTS

AB INITIO **CALCULATIONS**

COMPARISONS

PROJECT OF THE EXPERIMENT - ENTANGLED ¹¹¹Cd ATOMS FROM Cd² MOLECULES

2 3 4 5 6 7 8 9 10

0

2

4

30

5s 1 S0

 $\mathbf{5p}\ ^3\mathbf{P}\ \mathbf{1}$

25

R (Å)

Ener gy(x 1

0 ო **c**

 $6-\frac{1}{2}X^{1}0^{+}$

(*v''***,***J''* **)**

g

Fig. 7. Creation of a pair of entangled ¹¹¹Cd atoms. Diagram of the interatomic potentials of $Cd₂$ and the relevant stimulated Raman passage STIRAP leading to an excitation (at 257.1 nm) of the (*υ*',*J*') ro-vibrational level in the **A10^u +** -state potential well and a subsequent laser dissociation (at 305.0 nm) of the 111 Cd₂ (A₁+A₂=111) molecule to the repulsive part of the **X 10g +** state leading to *creation of a pair of entangled ¹¹¹Cd atoms "born" from one ¹¹¹Cd 2 molecule*. The proposal considers excitation of the rotating (*υ*″=0, *J*″=6) groundstate molecule in a free-jet beam to the ro-vibrating (*υ*′=40, *J*′=5) level, and a subsequent dissociation resulting in 80±10º separation angle and 0.78 eV center-ofmass kinetic energy.

305.0 257.1

Project: *ATOMIC SCALE SCIENCE FOR INNOVATIVE ECONOMY (ATOMIN)* Project: *NATIONAL LABORATORY FOR QUANTUM TECHNOLOGIES* Operational Programme Innovative Economy Action 2.1: *Development of centres with high research potential* Action 2.2: *Support for joint infrastructure of research centres*

Fig. 3. (a) Laser induced fluorescence (LIF) excitation spectrum recorded using the $C^31_u \leftarrow X^10_g^+$ and $D^10_u^+ \leftarrow X^10_g^+$ transitions in Cd₂. The envelopes of the vibrational progressions depend on **(b)** excitation-laser power curves, therefore do not represent a real Franck-Condon factor intensity distribution. The spectrum is compared with **(c)** the computer simulated ones obtained with an assumption that the excited and ground state interatomic potentials

Fig. 6. Experimental apparatus – the main and side vacuum chambers. The latter accommodate detection planes. The apparatus is planned to be used in realization of the scheme shown on the left.

Fig. 5. Selective detection of the ¹¹¹Cd atoms performed in detection planes after dissociation of $111}$ Cd₂ isotopologue. The detection is sensitive for the m_F =1/2 or m_F =-1/2 component of the total angular momentum **F**=**I**+**J**, where **I**(¹¹¹Cd)=1/2 and **J=L+S=**0 for the 5^1S_0 ground state.

