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investigated in cold environment of a free-jet expansion beam. Laser induced = 504 | fit 0, - 012 =
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indicate electronic transitions
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_ Beside the bound—bound transitions, part of the excitation spectrum  Fig. 1. Scheme of the experimental set-up: FCU — Frequency Conversion Unit, 32' 2 Rydberg state is also shown.
i.e., region of 207-208 nm, incorporates features that may indicate a presence L — Lenses, OG — Argon-filled OptoGalvanic cell, PD1, PD2 — PhotoDiodes, statesy s i el e,
of free«<—bound transitions (see Fig 3). To explain the recorded signal, we FP — Fabry-Perot etalon, PM — PhotoMultiplier tube. Perpendicular direction | X0 + clectrons of Cd were treated
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RESULTS COMPARISONS
Fig. 3. (a) Laser induced fluorescence (LIF) excitation spectrum transitions. A possible explanation includes a proximity of the E*1 -state potential that ;‘gnf aTcZ?gris‘gz bz)t(vs:;:
recorded using the C31u‘—)_(1og+_ and D10u+(_x1.og+ transitions in Cd,. correlates with the 6°P, Rydberg atomic asymptote lying above the 6°S, and 6'S, levels 55'_ the Cd, interatomic potentials
The envelopes of the vibrational progressions depend on (b) (see Figs. 2 and 4). However, an excitation energy transfer via B'1 -state potential barrier ab-initio calculated using a
Ie:x0|ta;c(|og-la§er p;)wter C‘_Jr‘t’es’ .tthe:je_f(zr_eb ?_0 not_”:epresen’i a real through the intermediate C*1, state is also possible. The question remains open. Future CASSCF/CASPT2  method
ranck-L,ondon - actor-intensity - distriottion. © spectim 1S experiments are planned to provide a plausible explanation of the observed features. | (dashed lines) with those
compared with (¢) the computer simulated ones obtained with an obtained experimentally in our
assumption that the excited and ground state interatomic potentials 20 laboratory in the past [2,4-8]
are represented with Morse functions using parameters shown in the V'=49 47 45 43 41 39 37 35 ] as well as reported here (:solid
figure. The experimentally determir.\.ed C3*1,and I;)10u.+-state potentials , - Tt r T 1 T T T T T T T T 1 lines). As can be seen, for the
were compared with those of ab-initio calculated in Fig. 4. C 1u - X 09j A'0*, B, and C*1, states
The most_ sho_rt-wavelength part _of _the_ spectrum departs from a 4 the theory-to-experiment
regular vibrational progression indicating e.g., a presence of . agreement is  satisfactory
free<—bound transitions juxtaposed on the distinct bound«bound (c) simulation ‘TE Case of the D'0,* state ié
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(c) simulation ' ' - as a result of the calculations.
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g - y T ) open question. Some
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= from the ground state. The
M J ~— energy regions investigated in
Widetime_window w | MMWMMWW (a) expt. the experiment are depicted
- I ! : : . x - - - - - - - - with thick bars on the vertical
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ENTANGLED Cd ATOMS FROM Cd2 MOLECULES ionization limit o o S Fig. 7. Creation of a pair of
| lonization 1 entangled ''Cd atoms.
The knowledge on the Cd, interatomic potentials (Fig.4) is essential with 5s5p P, ' — F= 3/2 45 - B1, 5p P, Diagram of the interatomic
respect to the planned experiment aiming at a verification of Bell's inequality A F=1/2 potentials  of Cd, and the
for a pair of neutral """Cd atoms "born" in a controlled dissociation of "'Cd, 6 Ghz] ot o— analysis relevant  stimulated Raman
molecules in a free-jet expansion beam [3] 2 1 = I passage STIRAP leading to
J P : 55215, F=1/2 an excitation (at 257.1 nm) of
-3/2 -1/2 1/2 3/2 m, - N )
the (U',J') ro-vibrational level in
Fig. 5. Selective detection of the ''Cd atoms performed in = the A0 *-state potential well
detection planes after dissociation of '''Cd, isotopologue. The < 3p and a subsequent laser
326|-2 nm detection is sensitive for the m.=1/2 or m.:=—1/2 component of § p P, dissociation (at 305.0 nm) of
sl - the total angular momentum F=I+J, where I('""Cd)=1/2 and ) the "'Cd, (A,+A,=111) mole-
dissociation 230.7 nm | 10— 1 = 301 5p °P i
257.1 nm laser ionization J=L+S=0 for the 5'S, ground state. 3 p F, cule to the repulsive part of
eXC'tIat'O” laser > the X'0 * state leading to
aser = .9 .
O 25 creation of a pair of entangled
beam W ""Cd atoms “born” from one
e ""'Cd, molecule. The proposal
Cd2 ~420 m/s — 5 % considers excitation of the
*~4Q:5\ Ctection Plang 6 rotating (v"=0, J"=6) ground-
~~~~~~~~ ] state molecule in a free-jet
~~~~~ < beam to the ro-vibrating
N 4- (U'=40, J'=5) level, and a
: /a%ysis subsequent dissociation
; 2 ing in 80+10° i
m "Cd |2 laser 1 resulting in 80£10° separation
laser 326.2 nm _h 5s 'S, angle and 0.78 eV center-of-
230.7 nm S |~ o oA 0 . mass kinetic energy.
N Fig. 6. Experimental apparatus — the main and side vacuum 8 9 10
Stectiop Plang chambers. The latter accommodate detection planes. The apparatus
is planned to be used in realization of the scheme shown on the left.
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