Towards realization of the E-P-R experiment for atoms created via molecular dissociation in pulsed supersonic beam

Molecular Spectroscopy and Quantum Information T. URBAŃCZYK¹, M. STROJECKI², <u>J. KOPERSKI¹</u>

¹Smoluchowski Institute of Physics, Jagiellonian University Reymonta 4, 30-059 Kraków, Poland ²Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Niezapominajek 8, 30-239 Kraków, Poland

Atomic Scale Science for Innovative Economy

Introduction

An idea of realization of the Einstein-Podolsky-Rosen experiment [1] for two spin-1/2 ¹¹¹Cd atoms is presented. The concept is based on the proposal of Fry et al. formulated for ¹⁹⁹Hg [2]. In the experiment presented here, the Cd₂ molecules are produced in a pulsed supersonic beam. Next, the ¹¹¹Cd₂ molecules are irradiated by two laser pulses and dissociated in a process of stimulated Raman passage. As a result, two entangled ¹¹¹Cd atoms with anti-parallel nuclear spins are produced. Orientation of the nuclear spins is recorded using spin-state-selective two-photon excitation-ionization method [3]. Current status of the preparation stage of the experiment is reported.

Experimental set-up

dissociation chamber (2) primary chamber (1)

detection chambers (3)

Fig. 1

The ¹¹¹Cd₂ molecule in pulsed supersonic beam is dissociated into two ¹¹¹Cd atoms (black solid lines). In two parallel detection planes, a spin selective detection of ¹¹¹Cd atoms is taking place. The detection relies on a two-photon excitation-ionization method. Angles between vertical direction perpendicular to the plane in which the atoms are propagating, and analysis and ionization beams are selected in the way which ensures the maximum violation of Bell inequality (for details see Ref. [3]).

Creation of entangled cadmium atoms

In the experiment, ¹¹¹Cd -¹¹¹Cd pairs of entangled atoms are produced using laser dissociation of ¹¹¹Cd₂ dimers produced in a pulsed supersonic beam (see Fig. 1). Laser dissociation of ¹¹¹Cd₂ takes place due to the stimulated Raman transition (SRT) from the X¹0_a⁺(5¹S₀) ground via the A¹0_u⁺(5¹P₁) excited and back to the repulsive part of the $X^10_{a}^+$ state (see Fig. 2). Due to the momentum conservation principle, in the process T_E a pair of entangled atoms - each in $(5s)^1S_0$ ground state - is created. It is crucial, that the ¹¹¹Cd isotope in its ground state possess only one non-zero angular momentum (nuclear spin I=1/2, while S, L and J are all zero). Because in the ¹¹¹Cd₂ molecule in the $X^10_q^+(1\Sigma_q^+)$ state all momenta are zero, it leads to the conclusion that the nuclear spins of the two ¹¹¹Cd atoms (oriented in opposite directions) are entangled. In the SRT process it is imperative to excite the ¹¹¹Cd₂ molecule only to one strictly specified $A^10_{\mu^+}$ state J' rotational level. The $A^10_u^+(v'=40, J'=5) \leftarrow X^10_a^+(v''=0, J''=6)$ transition (257.1nm, 20MHz) was chosen. After the dissociating transition (305.0nm, 2GHz), the separation angle between the two ¹¹¹Cd atoms should be equal to 90±10°.

Fig. 4b

Visualization (Fig. 4a) and laboratory set-up of the vacuum chambers (Fig. 4b). Primary chamber (1) in which the pulsed source of supersonic beam is located. Dissociation chamber (2) is separated from the primary chamber by a skimer (1mm in diameter). Both primary and dissociation chambers are pumped down to 10⁻⁶ mbar of ultimate pressure. Detection chambers (3) in which nuclear spin selective detection of entangled atoms is performed. Both detection chambers are equipped with ion pumps (ultimate pressure down to 10⁻¹⁰ mbar).

Pulsed source of supersonic beam

Cd₂ molecules are produced using a high-temperature high-pressure pulsed source of vdW dimers developed in present study [4] (see Fig. 5). Cadmium metal (natural abundance) is heated in the reservoir (1) up to 1000 K (Cd_{meltpoint}=594K). Cadmium vapour (partial pressure 0.2 bar) enter the mixing chamber (2) in which are mixed with carrier gas (argon). The mixing chamber ends with a nozzle (with D=0.15mm orifice) through which the mixture expands to the vacuum chamber forming a supersonic beam of Cd_2 . The pulsed operation of the nozzle is ensured by a titanium plunger (3) attached to the armature of an electrically driven solenoid valve (4, Parker-General Series 9). Parts of the pulsed source: water shield (5), carrier gas supplies (6), reservoir heater (7), source body heater (8), nozzle cartridge (9), orifice (10), nozzle cartridge heater (11).

<u>Tests of the pulsed source</u>

LIF excitation spectra of CdAr and Cd₂ recorded using the B³1(5³P₁) \leftarrow X¹0⁺(5¹S₀) and b³0⁺_u(5³P₁) \leftarrow X¹0⁺_a(5¹S₀) transitions, respectively. The apparatus and pulsed

Spin selective detection of atoms

Fig. 3a

source from Figs. 4b and 5, respectively were employed for the production of the molecules using following parameters: a) D=0.15mm, $p_{Ar}=5.5$ bar, $T_{reservoir}=923$ K, T_{body} =943K and T_{nozzle} =943K, X=11mm, repetition rate *f*=10Hz, valve pulse width *w*=0.7ms, laser pulse delay τ =1ms, time-gating interval 3-5 μ s. b) D=0.25mm, p_{Ar} =1.5bar, $T_{reservoir}$ =903K, T_{body} =948K, T_{nozzle} =948K, the remaining parameters as in a). c) As in a) but with timegating interval 0.2-0.5µs. d) Simulation of the bound \leftarrow bound LIF excitation spectrum from a) *i.e.*, recorded using the B³1 \leftarrow X¹0⁺, v'=0 transition in CdAr, assuming: ω_{e} '=11.3cm⁻¹, ω_{e} 'x_e'=0.59cm⁻¹, ω_{e} "=19.8cm⁻¹, $\omega_{\rm e}'' x_{\rm e}'' = 0.93 {\rm cm}^{-1}$, $R_{\rm e}' = 5.01 {\rm \AA}$, $R_{\rm e}'' = 4.31 {\rm \AA}$ from previous work, as well as calculated $B_e'=0.022808$ cm⁻¹ and $B_e''=$ 0.030818cm⁻¹, and assumed rotational temperature $T_{\rm rot}$ =3K, bandwidth of the laser $\Delta_{\rm L}$ =0.2cm⁻¹, and Doppler broadening Δ_G =0.2cm⁻¹. e) Simulation as in d) but for v''=0,1 and T_{rot} =19K. f) Simulation of the free←bound part of the excitation spectrum from (a) assuming: Born-Mayer and Morse representations for the excited- and ground-state potentials, respectively. g) Sum of simulations from d) and f) plotted to reconstruct the spectrum from a). h) Simulation of the bound ← bound spectrum from c) but recorded using the $b^30_u^+ \leftarrow X^10_q^+$, v"=0 transition in Cd₂, assuming: ω_e '=18.7cm⁻¹, $\omega_{e}'x_{e}'=0.34$ cm⁻¹, $\omega_{e}''=21.4$ cm⁻¹, $\omega_{e}''x_{e}''=0.35$ cm⁻¹, $R_{e}'=$ 4.02Å R_e"=3.78Å from previous work, as well as calculated B_{e} '=0.01848cm⁻¹ and B_{e} "=0.02090cm⁻¹, and assumed T_{rot} =3K, Δ_L =0.2cm⁻¹ and Δ_G =0.2cm⁻¹. i) Sum of simulations d), f) and h) plotted to reconstruct the spectrum from c).

References

- [1] A. Einstein, B. Podolsky, N. Rosen, *Phys. Rev.* 47 (1935) 777.
- [2] E.S. Fry, Th. Walther, S. Li, Phys. Rev. A 52 (1995) 4381.
- [3] T. Urbańczyk, M. Strojecki, M. Krośnicki, J. Koperski, Opt. Appl. (2012), submitted.
- [4] T. Urbańczyk, J. Koperski, Rev. Sci. Instrum. (2012), submitted.

