

Jagiellonian **University**

Molecular Laser Spectroscopy Group

e-mail: ªstrojecki@o2.pl ^bMarek.Ruszczak@wp.pl ^clukomski@if.uj.edu.pl ^dufkopers@cyf-kr.edu.pl

Jagiellonian University Atomic Optics Department Smoluchowski Institute of Physics ul. Reymonta 4, 30-059 Krakow, Poland

IS CADMIUM DIMER TRULY A VAN DER WAALS MOLECULE: ROTATIONS AT THE $^10^+_0(5^1P_1)$ ← $X^10^+_9$ AND 11 u (5^1P_1) ← $X^10^+_9$ + TRANSITIONS

<u>M. Strojeckia,</u> M. Ruszczak^b, M. Łukomski^c and J. Koperski^d

ABSTRACT

The supersonic molecular beam method **[1]** combined with high resolution laser spectroscopy technique has been used for investigation of the rotational structures in the ${}^1O_{{\mathsf u}}^+({\mathsf 5}^1P_{\mathsf 1})$ and ${}^1{\mathsf 1}_{{\mathsf u}}({\mathsf 5}^1P_{\mathsf 1})$ excited electronic energy states of Cd₂ van der Waals (vdW) molecule. Low resolution spectra of these states were reported by Lukomski at al. **[2]** and Koperski et al. **[3]**.

In the experiment, the $Cd₂$ molecules were produced in a supersonic free-jet expansion beam. The dimers were excited with a spectral narrow (Δ_{/as}≈ 0.08 cm⁻¹) dye-laser beam (NarrowScan, Radiant Dyes) in a vacuum chamber and the resulting total laser induced fluorescence in the form of rotationally resolved profiles was recorded with a photomultiplier **Fig. 1**. Rotational profiles of the ²²⁸Cd₂ isotopomer recorded in the $(v', v'') = (26,0)$, (27,0), (45,0), (46,0), (48,0) vibrational bands of the ¹ $O_u⁺(¹Σ_u⁺) ← X¹O_g⁺(¹Σ_g⁺)$ transition (**Fig. 2**) were analysed (in parentheses are Hund's-case-(a) equivalents of Hund'scase-(c) states). This particular isotopomer was chosen considering its relatively high abundance and rotational-levels symetry properties causing so-called intensity alternation effect Fig. 3. As a direct result, the $B_{\nu}{}'_{=26,27,45,46,48}$ excited- as ′ well as the B_{υ} "₌₀ ground-state rotational constants (TABLE 1) of the $(^{114}Cd)_2$ were determined. A multi-vibrational band and multi-rotational branch analysis together with computer simulations allowed determination of the absolute values for the *R^e* and *R^e* ″ excited- and ground-state bond lengths, respectively. The obtained result the *R^e* ″ - distinctly shorter than that obtained with assumption of pure ground-state van der Waals bonding supports a theoretical prediction of a covalent admixture to the bonding **[4]**. This result clearly indicates that hypothesis of a covalent admixture is plausible, can be supported by our experimental result and, consequently, the ground-state bonding in group-12 M_2 dimers (particularly in Cd $_2$) cannot be described as pure vdW interaction. It means that cadmium dimer may be regarded as an intermediate case between a weakly bound van der Waals molecule and a chemically bound species.

Fig. 1. Scheme of the experimental setup. **L** - lenses, **OG** - optogalvanic cell, **PD1**, **PD2** - photodiodes, **FP** - Fabry-Perot etalon, **PM** - photomultiplier tube. Perpendicular directions between laser beam, molecular supersonic expansion beam and direction of observation allow to considerably reduce a Doppler broadening (Δ_{Dopp} ≈ 0.12 cm⁻¹).

Fig. 2. Interatomic potentials of the $Cd₂$ for the ground and studied excited states. Ab initio potentials of Czuchaj **[5]** (black lines) are compared with result of Łukomski et al. **[2]** for the ground and for the ${}^{\prime} \mathcal{O} __{\!u}$ *+* (5 *¹P¹*) state as well as for the *11 u* (5 *¹P¹*) **[3]** state (red lines). Ranges of investigated v ' levels in the $^{\prime}$ 0_u *+* (5 *¹P¹*) and *11 u* (5 *¹P¹*) potential wells are depicted with horizontal blue lines.

Analysis of the partially resolved rotational profile recorded in the $(v', v'') = (38,0)$ band of the same isotopomer recorded at the $^{1}1_{u}(^{1}\Pi_{u}) \leftarrow X^{1}0_{g}^{+1}$ transition (**Fig. 2**) allowed estimation of the $B_{v=38}$ rotational constant (TABLE 1) in ′ the *¹ 1^u* state.

Fig. 3. Schematic diagram of the *10 u ⁺←*X*10 g +* transition for homonuclear isotopomers with $I = 0$ including appropriate selection rules and rotational-level symmetry properties (every second transition is missing, broken-line arrows). While for homonuclear isotopomers with $1 \neq 0$ instead of missing every second transition there is an intensity alternation of neighbouring transitions caused by statistical weight of these levels. For heteronuclear isotopomers all transitions occur. The nuclear-spin alternation effect together with rotationallevels symmetry properties explain intensities of the different isotopic components.

"Erratum", ibid. **69** (2004) 049901(E)

[3] J. Koperski, M. Ruszczak, M. Strojecki, M. Łukomski, "Spectroscopy of the *11u* (5 *¹P¹*) and *10u +* (5 *¹P¹*) singlet electronic states of cadmium dimer: Bond lengths and verification of ab initio potentials", *J. Mol. Spectrosc.*, in press

[4] H.-J. Flad, F. Schautz, Y. Wang, M. Dolg and A. Savin, *Eur. Phys. J. D 6* (1999) **243**. **[5]** E. Czuchaj, private communication; J. Koperski, *Eur. J. Phys*. Special Topics (2007), to be published **[6]** M. Łukomski, M. Strojecki, M. Ruszczak and J. Koperski, *Chem. Phys. Lett*. **434** (2007) 171-175; Erratum, ibid. **436** (2007), 400

[7] M. Strojecki, Rotational Spectra Simulator, version 1.6 (2007).

Fig. 8. Details of the rotational profile of the 228 Cd₂ isotopomer recorded in the (38,0) vibrational band of the *11 u* (5 *¹P¹*)←X *10g +* transition. **(a)** Experimental trace; **(b)** computer simulated profile **[7]** obtained as a result of convolution of every rotational transition with a Voigt function (assuming Δ_{/as}≈0.08 cm⁻¹, Δ_{ρορρ}≈0.12 cm⁻¹ and *Trot* ≈8 K); **(c)** *P*-, *Q*- and *R*-branches shown for the (114) Cd)₂ isotopomer with corresponding vertical bars. The ¹¹²Cd¹¹⁶Cd istopomer is not shown, however, it was taken into consideration during the simulation.

[8] M. Strojecki, M. Ruszczak, M. Łukomski, J. Koperski " Is cadmium dimer truly a van der Waals molecule?: Analysis of rotational profiles recorded at the A*10^u +* (*1Σu +*), B*11^u* (*¹Π^u*)←X*10 g +* transitions", *J.*

Chem. Phys., to be published

[9] C. F. Bender, T. N. Rescigno, H. F. Schaefer and A. E. Orel, *J. Chem. Phys.* **71**, 1122 (1979). **[10]** V. Lukeš, M. Ilčin, V. Laurinc, S. Biskupič, *Chem. Phys. Lett.* **424**, 199 (2006) **[11]** F. Schautz, H.-J. Flad and M. Dolg, *Theor. Chem. Acc.* **99**, 231 (1998). **[12]** M. Czajkowski and J. Koperski, *Spectrochim. Acta Part A* **55**, 2221 (1999).

abundance

mA1 +*mA2* is convoluted with a Voigt function with

 $FWHM=0.5$ cm⁻¹ (lower-resolution) and 0.15 cm⁻¹ (higher-

resolution), respectively. A part of the neighbouring

(υ*'-*1,0) band is shown in **(d)** to illustrate an overlap of its

isotopic components with those in the (υ*'*,0).

Fig. 5. Details of the rotational profiles of the ²²⁸Cd₂ isotopomer recorded in (A) (46,0), (B) (48,0), (C) (26,0) and (D) (27,0) vibrational bands (details of band (45,0) are presented elsewhere [6]) of the ${}^{1}O_{u}$ (a) Experimental traces; (b) computer simulated profiles [7] obtained as a result of convolution of every rotational transition with a Voigt function (in the simulations $\Delta_{\scriptscriptstyle las} \approx 0.08$ cm⁻¹, $\Delta_{\scriptscriptstyle Dopp} \approx 0.12$ cm (B) 5K, (C) 13K and (D) 15K were assumed); (c) P-branch (full blue bars) and R-branch (open red bars) of the ¹¹²Cd¹¹⁶Cd isotopomer (grey bars). (d) fringes recorded with a help of Fabry-Perot monitor etalon (FSR=0.2 cm⁻¹) for a fundamental dye-laser frequency.

presented only for *R*-branch) fitting. It assumes that the fitting procedure is performed for both *R*- and *P*-branches simultaneously. In other words, multiple data sets are simultaneously fitted with appropriate functions **[8]** of one independent variable (J) having common parameters (common *Bυ ′* for both *R*- and *P*-branches of the same (v' ,0) band and common B_v "₌₀ for all (v' ,0) bands and both *R*- and *P*-branches) by minimizing the total WSSR (Weighted by the input data errors Sum of the Squared Residuals between the input data points and the function values) coefficient. The $\Delta v_{\mathcal{R}}(J)$ plot includes also the (45,0) vibrational band marked with asterisk and analysed in Ref. **[6]**. Obtained values of the rotational constants B_{ν} '_{=26,27,45,46,48} and B_{ν} "₌₀ *′* obtained with help of this procedure are collected in **TABLE 1**.

state plotted against ^υ*′*. Theoretical function plotted according to $B_v = B_e - a_e(v + \frac{1}{2})$ (solid line) assuming a Morse representation of the excited state. A linear fit (dashed red line) obtained with the *R^e ′* as a free parameter (according to *R^e* = (*h*/8*π*2*cμBe*) 1/2 allowed approximation of the excited-state bond length (**TABLE 1**).

