

Jagiellonian University

IS CADMIUM DIMER TRULY A VAN DER WAALS MOLECULE: ROTATIONS AT THE ${}^{1}0_{u}(5^{1}P_{1}) \leftarrow X^{1}0_{g}^{+} AND {}^{1}1_{u}(5^{1}P_{1}) \leftarrow X^{1}0_{g}^{+} TRANSITIONS$

M. Strojeckia, M. Ruszczak^b, M. Łukomski^c and J. Koperski^d

Jagiellonian University Atomic Optics Department Smoluchowski Institute of Physics ul. Reymonta 4, 30-059 Krakow, Poland

Molecular Laser Spectroscopy Group

e-mail: astrojecki@o2.pl bMarek.Ruszczak@wp.pl clukomski@if.uj.edu.pl dufkopers@cyf-kr.edu.pl

ABSTRACT

The supersonic molecular beam method [1] combined with high resolution laser spectroscopy technique has been used for investigation of the rotational structures in the ${}^{1}O_{u}^{+}(5{}^{1}P_{1})$ and ${}^{1}I_{u}(5{}^{1}P_{1})$ excited electronic energy states of Cd₂ van der Waals (vdW) molecule. Low resolution spectra of these states were reported by Lukomski at al. [2] and Koperski et al. [3].

In the experiment, the Cd_2 molecules were produced in a supersonic free-jet expansion beam. The dimers were excited with a spectral narrow ($\Delta_{las} \approx 0.08 \text{ cm}^{-1}$) dye-laser beam (NarrowScan, Radiant Dyes) in a vacuum chamber and the resulting total laser induced fluorescence in the form of rotationally resolved profiles was recorded with a photomultiplier Fig. 1. Rotational profiles of the ²²⁸Cd₂ isotopomer recorded in the (v', v'') = (26,0), (27,0), (45,0), (46,0), (48,0) vibrational bands of the ${}^{1}O_{u}^{+}({}^{1}\Sigma_{u}^{+}) \leftarrow X^{1}O_{a}^{+}({}^{1}\Sigma_{a}^{+})$ transition (Fig. 2) were analysed (in parentheses are Hund's-case-(a) equivalents of Hund'scase-(c) states). This particular isotopomer was chosen considering its relatively high abundance and rotational-levels symetry properties causing so-called intensity alternation effect Fig. 3. As a direct result, the $B_{v=26,27,45,46,48}$ excited- as well as the $B_{n}''_{=0}$ ground-state rotational constants (**TABLE 1**) of the (¹¹⁴Cd)₂ were determined. A multi-vibrational band and multi-rotational branch analysis together with computer simulations allowed determination of the absolute values for the R_{e} and Re" excited- and ground-state bond lengths, respectively. The obtained result the R_e'' - distinctly shorter than that obtained with assumption of pure ground-state van der Waals bonding supports a theoretical prediction of a covalent admixture to the bonding [4]. This result clearly indicates that hypothesis of a covalent admixture is plausible, can be supported by our experimental result and, consequently, the ground-state bonding in group-12 M₂ dimers (particularly in Cd₂) cannot be described as pure vdW interaction. It means that cadmium dimer may be regarded as an intermediate case between a weakly bound van der Waals molecule and a chemically bound species.

Analysis of the partially resolved rotational profile recorded in the (v',v'') = (38,0) band of the same isotopomer recorded at the ${}^{1}\mathcal{I}_{u}({}^{1}\Pi_{u}) \leftarrow X^{1}\mathcal{O}_{a}^{+}$ transition (Fig. 2) allowed estimation of the $B'_{\nu=38}$ rotational constant (TABLE 1) in the ${}^{1}1_{\mu}$ state.

Fig. 1. Scheme of the experimental setup. L - lenses, OG - optogalvanic cell, PD1, PD2 - photodiodes, FP - Fabry-Perot etalon, PM - photomultiplier tube. Perpendicular directions between laser beam, molecular supersonic expansion beam and direction of observation allow to considerably reduce a Doppler broadening ($\Delta_{Dopp} \approx 0.12 \text{ cm}^{-1}$).

Fig. 2. Interatomic potentials of the Cd₂ for the ground and studied excited states. Ab initio potentials of Czuchaj [5] (black lines) are compared with result of Łukomski et al. [2] for the ground and for the ${}^{1}O_{\mu}^{+}(5{}^{1}P_{\tau})$ state as well as for the ${}^{1}1_{\mu}(5{}^{1}P_{1})$ [3] state (red lines). Ranges of investigated v' levels in the ${}^{1}O_{\mu}(5^{1}P_{1})$ and $^{1}1_{..}(5^{1}P_{1})$ potential wells are depicted with horizontal blue lines.

Schematic diagram of the Fig. 3. ${}^{1}O_{\mu}^{+} \leftarrow X^{1}O_{a}^{+}$ transition for homonuclear isotopomers with I = 0 including appropriate selection rules and rotational-level symmetry properties (every second transition is missing, broken-line arrows). While for homonuclear isotopomers with $I \neq 0$ instead of missing every second transition there is an intensity alternation of neighbouring transitions caused by statistical weight of these levels. For heteronuclear isotopomers all transitions occur. The nuclear-spin alternation effect together with rotationallevels symmetry properties explain the different intensities of isotopic components.

Fig. 5. Details of the rotational profiles of the ²²⁸Cd₂ isotopomer recorded in (A) (46,0), (B) (48,0), (C) (26,0) and (D) (27,0) vibrational bands (details of band (45,0) are presented elsewhere [6]) of the ${}^{1}O_{u}^{+}(5{}^{1}P_{1}) \leftarrow X{}^{1}O_{q}^{+}$ transition. (a) Experimental traces; (b) computer simulated profiles [7] obtained as a result of convolution of every rotational transition with a Voigt function (in the simulations Δ_{las}≈0.08 cm⁻¹, Δ_{Dopp}≈0.12 cm⁻¹ and rotational temperature T_{rot} of (A) 7K, (B) 5K, (C) 13K and (D) 15K were assumed); (c) P-branch (full blue bars) and R-branch (open red bars) of the (114Cd)₂ isotopomer; P- and R-branches of the ¹¹²Cd¹¹⁶Cd isotopomer (grey bars). (d) fringes recorded with a help of Fabry-Perot monitor etalon (FSR=0.2 cm⁻¹) for a fundamental dye-laser frequency.

presented only for R-branch) fitting. It assumes that the fitting procedure is performed for both R- and P-branches simultaneously. In other words, multiple data sets are simultaneously fitted with appropriate functions [8] of one independent variable (J) having common parameters (common B_v ' for both *R*- and *P*-branches of the same (v',0) band and common $B_{v''=0}$ for all (v',0) bands and both R- and *P*-branches) by minimizing the total WSSR (Weighted by the input data errors Sum of the Squared Residuals between the input data points and the function values) coefficient. The $\Delta v_{R}(J)$ plot includes also the (45,0) vibrational band marked with asterisk and analysed in Ref. [6]. Obtained values of the rotational constants $B_{v'=26,27,45,46,48}$ and $B_{v''=0}$ obtained with help of this procedure are collected in TABLE 1.

 $m_{A1} + m_{A2}$ is convoluted with a Voigt function with

FWHM=0.5 cm⁻¹ (lower-resolution) and 0.15 cm⁻¹ (higher-

resolution), respectively. A part of the neighbouring

(v'-1,0) band is shown in (d) to illustrate an overlap of its

isotopic components with those in the (v',0).

state plotted against v'. Theoretical function plotted according to $B_v = B_e - \alpha_e(v + \frac{1}{2})$ (solid line) assuming a Morse representation of the excited state. A linear fit (dashed red line) obtained with the R_e' as a free parameter (according to $R_e = (h/8\pi^2 q \mu B_e)^{1/2}$ allowed approximation of the excited-state bond length (TABLE 1).

Fig. 8. Details of the rotational profile of the ²²⁸Cd₂ isotopomer recorded in the (38,0) vibrational band of the ${}^{1}1_{\mu}(5{}^{1}P_{1}) \leftarrow X{}^{1}0_{a}^{+}$ transition. (a) Experimental trace; (b) computer simulated profile [7] obtained as a result of convolution of every rotational transition with a Voigt function (assuming $\Delta_{las} \approx 0.08 \text{ cm}^{-1}$, $\Delta_{Dopp} \approx 0.12 \text{ cm}^{-1}$ and $T_{rat} \approx 8 \text{ K}$; (c) P-, Q- and R-branches shown for the (¹¹⁴Cd)₂ isotopomer with corresponding vertical bars. The ¹¹²Cd¹¹⁶Cd istopomer is not shown, however, it was taken into consideration during the simulation.

[2] M. Łukomski, J. Koperski, E. Czuchaj, and M. Czajkowski, Phys. Rev. A 68 (2003) 042508; *"Erratum", ibid.* **69** (2004) 049901(E)

[3] J. Koperski, M. Ruszczak, M. Strojecki, M. Łukomski, "Spectroscopy of the $^{1}I_{\mu}(5^{1}P_{1})$ and $^{1}O_{\mu}(5^{1}P_{1})$ singlet electronic states of cadmium dimer: Bond lengths and verification of ab initio potentials", J. Mol. Spectrosc., in press

[4] H.-J. Flad, F. Schautz, Y. Wang, M. Dolg and A. Savin, Eur. Phys. J. D 6 (1999) 243. [5] E. Czuchaj, private communication; J. Koperski, Eur. J. Phys. Special Topics (2007), to be published [6] M. Łukomski, M. Strojecki, M. Ruszczak and J. Koperski, Chem. Phys. Lett. 434 (2007) 171-175; Erratum, ibid. **436** (2007), 400

[7] M. Strojecki, Rotational Spectra Simulator, version 1.6 (2007).

[8] M. Strojecki, M. Ruszczak, M. Łukomski, J. Koperski " Is cadmium dimer truly a van der Waals molecule?: Analysis of rotational profiles recorded at the $A^1 O_{\mu}^+ ({}^1\Sigma_{\mu}^+)$, $B^1 I_{\mu} ({}^1\Pi_{\mu}) \leftarrow X^1 O_{\sigma}^+$ transitions", J.

Chem. Phys., to be published

[9] C. F. Bender, T. N. Rescigno, H. F. Schaefer and A. E. Orel, J. Chem. Phys. 71, 1122 (1979). [10] V. Lukeš, M. Ilčin, V. Laurinc, S. Biskupič, Chem. Phys. Lett. 424, 199 (2006) [11] F. Schautz, H.-J. Flad and M. Dolg, Theor. Chem. Acc. 99, 231 (1998). [12] M. Czajkowski and J. Koperski, Spectrochim. Acta Part A 55, 2221 (1999).