

INVESTIGATION OF THE $E^{3}\Sigma^{+}$ ($6^{3}S_{1}$) RYDBERG ELECTRONIC ENERGY STATE IN CdRG (RG=Ar,Kr) COMPLEXES USING THE OPTICAL-OPTICAL DOUBLE RESONANCE

T. URBANCZYK^a, M. STROJECKI^b, J. KOPERSKI^a

^aSmoluchowski Institute of Physics, Jagiellonian University Reymonta 4, 30-059 Krakow, Poland

^b Institute of Catalysis and Surface Physics, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland

National Laboratory for Quantum **Technologies**

INTRODUCTION

Isotopic and rotational structures of the (υ', υ'') vibrational bands in the $E^{3}\Sigma^{+}(\upsilon') \leftarrow A^{3}\Pi_{0+}(\upsilon'')$ and $E^{3}\Sigma^{+}(\upsilon') \leftarrow B^{3}\Sigma^{+}(\upsilon'')$ transition in CdAr and CdKr complexes were investigated using free-jet expansion beam and laser excitation. An optical-optical double resonance (OODR) process was employed starting from the $X^1 \Sigma_0^+$ to the $E^3 \Sigma^+$ lowest Rydberg via the $A^3 \Pi_{0+}$ or $B^3 \Sigma_1^+$ intermediate electronic state. In the experiment the CdAr and CdKr molecules produced in a free-jet expansion beam were irradiated with two successive laser pulses from two dye lasers pumped simultaneously by the second and third harmonics of the same Nd⁺: YAG laser. The first dye-laser pulse, was frequency doubled and excited a maximum number of the CdAr or CdKr molecules from the $X^{1}\Sigma_{0}^{+}(\upsilon=0)$ to the $A^3\Pi_{0+}$ ($\upsilon = 5 \text{ or } 9$, respectively) or $B^3\Sigma_1^+$ ($\upsilon = 1$) intermediate level. The primarily excited molecules were irradiated with a second dye-laser pulse from the υ to the υ level in the E³ Σ^{\dagger} state. The resulting laser induced fluorescence signal, which was observed perpendicularly to the plane containing the molecular and laser beams, was recorded with photomultiplier tube. The signal from PM was integrated in digital oscilloscope and stored in a computer. The structure of the bands with well defined isotopic structure was analyzed taking into account a complex rotational structure of the triplet — triplet transition. Simulation of the bands provides new values for the ω_{e} , $\omega_{e}x_{e}$, B_u and D_u vibrational and rotational characteristics of the upper and lower states.

FIG. 1. Experimental set-up used for optical-optical double resonance (OODR) method. ¹Nd⁺YAG laser Powerlite 7010 of Continuum, ²"Probe" dye laser (NarrowScan of Radiant Dyes Lasers & Accessories) working with Coumarine 480 in Methanol (spectral range 474-488nm), ³"Pump" dye laser (TDLIII of Quantel) working with DCM in DMSO (spectral range 322.5-332.5 nm), ⁴Frequency Conversion Unit, ⁵Free-Jet Source, ⁶Photomultiplier ("pump"-laser excitation), ⁷Photomultiplier ("probe"-laser excitation), "Delay Optical Line, "Controler Unit.

BIBLIOGRAPHY

- J. Koperski, Van der Waals Complexes in Supersonic Beam, Willey-VCH, 2002.
- J. Koperski, M. Czajkowski, Phys. Rev. A 69 (2004) 042509.
- J. Koperski, M. Czajkowski, Spectrochim. Acta A 59 (2003) 2435. [3]
- [4] PGOPHER, a Program for Simulating Rotational Structure, C. M. Western, University of Bristol,

http://pgopher.chm.bris.ac.uk.

FIG. 2. Interatomic potentials of the ground $X^{1}\Sigma_{0}^{+}(5^{1}S_{0})$, $A^{3}\Pi_{0+}(5^{3}P_{1})$ and $B^{3}\Sigma_{1}^{+}(5^{3}P_{1})$ intermediate and the $E^{3}\Sigma^{+}(6^{3}S_{1})$ lowest Rydberg electronic states of CdAr (part a) and CdKr (part b) [3]. Vertical arrows represent the "pump" and "probe" lasers. Scheme on the right (in part a) illustrates a part of rotational structure of the $E^{3}\Sigma^{+} - A^{3}\Pi_{0+}$ electronic transition (not in scale).

Acknowledgements

The research was financed from 2007-2010 funds for science of Polish Ministry of Science and Higher Education (research project N N202 2137 33). The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program called Atomic Scale Science for Innovative Economy - ATOMIN and National Laboratory for Quantum Technologies - NLQT (contracts no. POIG.02.01.00-12-023/08 and POIG.02.02.00-00-0003/08, respectively).

CdAr: transition via $A^{3}\Pi_{0+}$ state

OUR RESULTS		
	Α ³ Π ₀₊	$E^{3}\Sigma_{1}^{+}$ (in)
	20.01 cm^{-1}	100 F