

SHORT-RANGE REPULSION IN THE SINGLET ELECTRONIC EXCITED STATES OF Zn-RG AND Cd-RG COMPLEXES: HOW MUCH OF VAN DER WAALS INTERACTION?

<u>M. STROJECKI</u>^{a[†]}, M. KROŚNICKI^b, J. KOPERSKI^a

^aSmoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland ^b Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland [†]e-mail: strojecki@02.pl

Jagiellonian University

Molecular Laser Spectroscopy Group Institute of Physics

University of Gdańsk

ABSTRACT

The supersonic beam technique combined with methods of laser spectroscopy have been applied to determine the repulsive wall of the $D^{1}\Sigma^{+}$ (Ω =0) excited-state potential of Zn-RG (RG=Ne, Ar, Kr)[1] and Cd-RG complexes (RG=He [2], Ne [2], Ar [3], Kr [3], Xe [2]). The complexes were produced in a continuous free-jet expansion beam and excited with a dyelaser beam directly from the $X^{1}\Sigma^{+}$ (Ω =0) to the excited state (see Fig. 2). A total laser induced fluorescence (LIF) signal was recorded with a photomultiplier (for details of the experimental procedure see [3] and Fig. 1). Analysis of the LIF signal in the form of the unstructured continuum ← bound profiles, recorded for the first time in the excitation using the $D^{1}\Sigma^{+} \leftarrow X^{1}\Sigma^{+}$ transition, yielded information on the short-range $D^{1}\Sigma^{+}$ -state potential of the complexes. A comparison between the $D^{1}\Sigma^{+}$ -state repulsive branches of the ZnNe and CdNe, ZnAr and CdAr, and ZnKr and CdKr, as well as comparison with the results of *ab initio* calculations [4,5] yielded information on a character of the bonding in this region of internuclear separations (*i.e.*, R=3.5–5 Å). Besides of the increasing repulsion that with RG-atom ground-state polarizability increases α_{RG} $(\alpha_{He} < \alpha_{Ne} < \alpha_{Ar} < \alpha_{Kr} < \alpha_{Xe})$ [6] we also found that the repulsion depends on the atomic excited-state α_{Zn}^* and α_{Cd}^* polarizabilities of the asymmetrical electron density distribution of metal atom. This indicates a similar behaviour as in the ground states of the Zn-RG and Cd-RG molecules [7], that are dominated by van der Waals interaction with an admixed covalent contribution in the short-range region (see Table 1).

Fig. 2. Potential energy curves (PEC) and their associated orbital interactions drawn for the (a) $X^{1}\Sigma^{+}$ ground as well as (C) (b) $D^{1}\Sigma^{+}$ excited state of **ZnKr** ZnKr correlated with the 4¹P₁ atomic asymptote. Potentials of the ground $X^1\Sigma^+$ and excited states are represented with ab initio points of Czuchaj et al. [5]. The free←bound transition between the ground and $D^{1}\Sigma^{+}$ excited state 4s4p 'P observed in the experiment are marked with vertical arrows; (c) μ - transition dipole moments for the $D^1\Sigma^+ \leftarrow X^1\Sigma^+$ transition. free←bound Similar schemes can be drawn 212 nm for the other MeRG (Me=Zn, $4s^{2} S_{1}$ Cd; RG=He, Ne, Ar, Kr, Xe) complexes. Grey area corresponds to the region where free←bound transitions occur.

BIBLIOGRAPHY:

- [1] M. Strojecki, M. Krośnicki and J. Koperski, "Short-range repulsion in the $D^{1}\Sigma^{+}$ -state potential of the ZnRg (Rg = Ne, Ar, Kr) complexes determined from a direct free bound excitation at the $D^{1}\Sigma^{+} \leftarrow X^{1}\Sigma^{+}$ *transition*["], to be published
- [2] M. Strojecki, M. Krośnicki, M. Łukomski and J. Koperski, "*Excitation spectra of Cd-rare gas complexes* recorded at the $D^{1}\Sigma^{+} \leftarrow X^{1}\Sigma^{+}$ transition: from the heaviest CdXe to the lightest CdHe^{*}, to be published [3] M. Ruszczak, M. Strojecki, and J. Koperski, Chem. Phys. Lett., 416, 147-151 (2005) [4] E. Czuchaj, M. Krośnicki and H. Stoll, *Theor. Chem. Acc.*, **105**, 219-226 (2001)

Fig. 1. Scheme of the experimental set-up **FCU** – **F**requency **C**onversion **U**nit, L – lenses, OG – Argon filled optogalvanic cell, PD1, PD2 – photodiodes, **FP** – Fabry-Perot etalon, **PM** – photomultiplier tube. Perpendicular directions between laser beam, molecular supersonic expansion beam and direction of observation allow reducing a Doppler broadening.

[5] E. Czuchaj, M. Krośnicki, H. Stoll, Chem. Phys., 265, 291-299 (2001) [6] T. M. Miller and B. Bederson, *Adv. At. Mol. Phys.*, **13**, 1-55 (1977) [7] J. Koperski, "Van der Waals Complexes in Supersonic Beams. Laser Spectroscopy of Neutral-Neutral Interactions", Wiley-VCH, Weinheim, (2003) [8] D.J. Funk, A. Kvaran, W.H. Breckenridge, J. Chem. Phys., 90 (1989) 2915 [9] I. Wallace, J.G. Kaup, W.H. Breckenridge, J. Phys. Chem., 95 (1991) 8060 [10] J.G. Kaup, W.H. Breckenridge, J. Phys. Chem., 99 (1995) 13701

Fig. 3. The LIF excitation spectra of ZnAr, ZnNe and ZnKr recorded in the experiment. (a) Total LIF spectrum to the blue from the $4^{1}P_{1}-4^{1}S_{0}$ Zn atomic transition corresponding to the $D^{1}\Sigma^{+}\leftarrow X^{1}\Sigma^{+}$

[9,10], respectively.

(v"=0) free bound transitions. (b) Simulation of the unstructured profile in which Morse representations for the $X^{1}\Sigma^{+}$ [7] and $D^{1}\Sigma^{+}$ states were used (see Table 1), $\mu(R) = 1$ was used during the simulation. (c) Optogalvanic signal from an Ar-filled hollow cathode lamp recorded as a function of wavelength corresponding to the fundamental laser frequency; the identified Arl lines are: 425.120, 425.936, 426.629, 427.217 nm.

(v"=0) free bound transitions. (b) Simulation of the unstructured profile corresponding to the $D^{1}\Sigma^{+}\leftarrow X^{1}\Sigma^{+}$ free \leftarrow bound transition in which Morse representations for the $X^{1}\Sigma^{+}$ [7] and $D^{1}\Sigma^{+}$ states were used (see Table 1). For CdXe transitions from (v"=0, 1, 2) are also included. $\mu(R) = 1$ was used during the simulation. (c) Optogalvanic signal from an Ar-filled hollow cathode lamp recorded as a function of wavelength corresponding to the fundamental laser frequency; the identified Arl lines are: 451.073, 452.232, 455.432 nm.

	ZnHe °	CdHe ^a	ZnNe ^a	CdNe ^a	ZnAr ^a	CdAr	ZnKr ^a	CdKr	ZnXe	CdXe ^a
<i>D</i> _e ' (cm ⁻¹)	2.1	8.2	19	38	48	70.5 ^b	64	103.3 ^b	134 ^e	155
<i>R</i> _e ' (Å)	7.69	8.10	7.60	6.90	6.88	6.48 ^b	6.30	5.66 ^b	5.85 ^e	5.33
β'/10 ⁸ (Å ⁻¹)	—	0.49	0.50	0.52	0.52	0.54 ^b	0.63	0.72 ^b	0.71 ^e	0.77
A' (cm⁻¹)	_	1.9 [.] 10 ⁴	9.5 [.] 10 ⁴	1.1·10⁵	1.6 [.] 10⁵	1.78·10 ^{5 b} -4.5979 ^d	5.1·10⁵	2.66 [.] 10 ^{6 b} 1.4731 [.] 10 ^{6 d}	1.0·10 ^{6 f}	4.8 [.] 10 ⁷
b' (Å ⁻¹)	-	1.05	1.30	1.36	1.38	1.42 ^b -0.6758 ^d	1.65	2.103 [⊾] 1.5399 ^d	1.725 ^f	2.76
C' ₀ (Å ⁻¹)	_	12	40	40	80	110 ^b	80	132 ^b	_	90
$\Delta R = R_e' - R_e" (Å)$	3.23	3.50	3.18	2.58	2.50	2.17	1.94	1.39	1.47	1.08
^a this work; ^b Ref. [3]; ^c Ref. [5]; ^d Ref. [8]; ^e Ref. [9]; ^f Ref. [10]										

for (d) ZnXe by Wallace et al. [9] (solid line) and Czuchaj et al. [5] (dashed line) are also shown for comparison. Inserts show the potentials in energy regions (including potential wells) probed (a)-(c) this in experiment and (d) in [9]. Positions of $R_e^{"}$ for each complex are depicted with arrows.

-state potential obtained