

LIF excitation and emission spectra of CdAr van der Waals complexes: Novel possibilities J. Dudek¹, T. Urbańczyk¹, M. Krośnicki², A. Kędziorski³, J. Koperski¹

Molecular Laser Spectroscopy and Quantum Information Group

Department of Photonics

Jagiellonian University in Krakow ¹ M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
² Institute of Theoretical Physics and Astrophysics, University of Gdansk, Wita Stwosza 57, 80-952 Gdańsk, Poland
³ Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland

van der Waals complexes in supersonic beam

VAN DER WAALS COMPLEXES

van der Waals (vdW) diatomic complexes constitute the simplest model for theoretical and experimental studies of vdW interactions [1].

Experimental scheme

Two types of detection are used in the experiment:

 \rightarrow Excitation spectra

Photomultipliers to measure total laser induced fluorescence (LIF) signal

\rightarrow Emission spectra

Spectrograph with CCD camera (working range 200 – 975 nm)

Experimental scheme used in excitation and emission spectroscopy of CdAr vdW complexes in supersonic beam using optical – optical double resonance (OODR) method [3].

Example of van der Waals complex - CdAr.

The supersonic expansion technique provides a source of rotationally and vibrationally **cold molecules** which are weakly bound in their **ground** states. It is widely used method in laser spectroscopy of molecules [1].

Ab initio potentials of CdAr complex

Novel potential curve of the E³1(6³S₁) Rydberg state of CdAr vdW complex was calculated by *ab initio* method [2]. The main goal of the presented work is to determine these Rydberg - state potentials experimentally employing both LIF excitation and emission spectra, and verify accuracy of the ab initio method. pulsed source of molecular beam
 vacuum chamber
 vacuum chamber
 oscilloscope
 pulsed Nd : YAG laser
 spectrograph
 tuneable dye laser
 with CCD
 photomultipliers
 wavemeter

Using results of ab initio calculations,

Excitation to Rydberg via the C¹1(5¹P₁) state

Both **bound** \rightarrow **bound** and **bound** \rightarrow **free** transitions from the inner well of the E³1 (v'=13) state in ¹¹²Cd⁴⁰Ar have been simulated using LEVEL [4] and BCONT [5] programs, respectively.

Four transitions are able to observe using spectrograph (Andor model ME5000): $E^{3}1 \rightarrow A^{3}0^{+}$, $a^{3}0^{-}$, $B^{3}1$, $b^{3}2$

Intensity of the $E^{3}1 \rightarrow B^{3}1$ transition is reduced because of low value of transition dipole moment (TDM) function.

A few possibilities of excitation to Rydberg states of CdAr complex using OODR method *via* the C¹1 state has been simulated using LEVEL [4] program.

Only **Franck – Condon** factors have been taken into consideration for calculation of intensity of transitions. Transition dipole moment functions were **not** taken into account. $1(5^{3}D_{3}) \leftarrow C^{1}1(5^{1}P_{1})$

Simulation of emission from the **E³1** state of CdAr complex. Working range of CCD camera is shown on the picture.

Acknowledgement

This work was supported by the National Science Centre Poland under grant number UMO-2015/17/B/ST4/04016.

Conclusions

Emission from the E³1 state: it is possible to obtain the shape of **repulsive part of the b³2 state** on the basis of spectra of bound – free transitions. Excitation through the C¹1(5¹P₁): 1(5³D₃) \leftarrow C¹1 and 0(7¹S₀) \leftarrow C¹1 transitions are available to obtain experimentally.

References

- [1] J. Koperski, Van der Waals Complexes in Supersonic Beams: Laser Spectroscopy of Neutral- Neutral Interactions, Wiley-VCH, Weinheim, 2003
- [2] M. Krośnicki, A. Kędziorski, T. Urbańczyk and J. Koperski, Valence and Rydberg states of CdAr within ab initio approach, in preparation
- [3] T. Urbańczyk, M. Krośnicki, A. Kędziorski, J. Koperski, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 196, 1386 (2018)
- [4] R. J. Le Roy, J. Quant. Spectrosc. Radiat. Transf. **186**, 167 (2017)
- [5] R. J. Le Roy, G. T. Kreamer, BCONT 2.2 [Computer software], 2004; retrieved from http://scienide2.uwaterloo.ca/~rleroy/bcont (Retrieved July 4, 2018)