Efekty odrzutu i lokalizacji atomów w pułapce magnetooptycznej

Maria Brzozowska

PRACA DOKTORSKA

INSTYTUT FIZYKI IM. MARIANA SMOLUCHOWSKIEGO
UNIwersytet Jagielłoński, Kraków

prof. dr hab. Wojciech Gawlik, Promotor
prof. dr hab. Jakub Zakrzewski, Recenzent
dr hab. Marek Trippenbach, Recenzent

2005
Spis treści

Podziękowania vii

Streszczenie ix

Wprowadzenie 1

1 Rezonanse odrzutu 5
 1.1 Wprowadzenie 5
 1.2 RIR w przestrzeni pędów 6
 1.2.1 Hamiltonian oddziaływania 6
 1.2.2 Interpretacja 11
 1.2.3 Obliczenie sygnału 14
 1.2.4 Dyskusja kształtu sygnału odrzutu 15
 1.2.5 Dodatkowe uwagi 18
 1.3 RIR w przestrzeni położen 20
 1.3.1 Opis teoretyczny 20
 1.3.2 Interpretacja 22
 1.4 Podsumowanie 23

2 Układ doświadczalny 25
 2.1 Wprowadzenie 25
 2.2 Ogólna charakterystyka układu laserów 25
 2.3 Częstotliwości laserów i ich przestrajanie 28
 2.4 Układ optyczny i próżnia 30
 2.5 Cewki kwadrupolowego pola magnetycznego 31
 2.6 Układ wyłączania cewek 32
 2.7 Detektor sygnału absorpcji 33

3 Spektroskopia ramanowska z wiązkami pułapkującymi 35
 3.1 Wprowadzenie 35
 3.2 Konfiguracja eksperymentu 35
 3.3 Widma absorpcji we włączoną pułapce 36
 3.3.1 Przejścia ramanowsko-zeemanowskie 37
 3.3.2 Rezonanse odrzutu 41
 3.4 Widma z wyłączonym polem magnetycznym 44
 3.4.1 Wprowadzenie 44
 3.4.2 Opis pomiaru 44
 3.4.3 Wyniki i ich interpretacja 45
 3.5 Podsumowanie 51
4 Rezonanse odrzutu wolne od tła
4.1 Wprowadzenie ... 53
 4.1.1 Pomiar absorpcji polaryzacji liniowej 54
 4.1.2 Zastosowanie pola radiowego 55
 4.1.3 Modulacja światła pułapkującego 57
4.2 Metoda pomiaru rezonansów odrzutu poza rezonansem 58
 4.2.1 Wprowadzenie ... 58
 4.2.2 Zalety metody .. 58
 4.2.3 Różne konfiguracje eksperymentalne pomiaru RIR 61
4.3 Wyniki pomiarów temperatury 66
 4.3.1 Kalibracja osi częstotliwości 66
 4.3.2 Wpływ wiązka pompujących na temperaturę atomów 68
 4.3.3 Wpływ natężenia wiązka pułapkujących 70
 4.3.4 Wpływ odstrogienia wiązka pułapkujących 73
 4.3.5 Wpływ natężenia wiązka repompujących 74
 4.3.6 Wpływ gradientu pola magnetycznego 75
4.4 Wyznaczanie rozkładu prędkości 76
4.5 Rozkład prędkości w różnych kierunkach 79
 4.5.1 Badanie rozkładu prędkości pułapkowanych atomów 79
 4.5.2 Badanie anizotropii w pułapce przy nierównowadze ciśnieni
 światła ... 82
4.6 Dyskusja niepewności pomiarowej 86
 4.6.1 Pułapka magnetooptyczna jako źródło niepewności 86
 4.6.2 Oszacowanie niepewności systematycznej 87
 4.6.3 Wnioski .. 90
4.7 Podsumowanie .. 90
5 Przejścia ramanowskie w sieciach 91
5.1 Wprowadzenie .. 91
5.2 Jednowymiarowa sieć optyczna 92
5.3 Przejścia wibracyjne w sieci optycznej 95
 5.3.1 Amplituda pojedynczego przejścia spontanicznego 96
 5.3.2 Amplituda przejścia ramanowskiego 98
 5.3.3 Stany wibracyjne atomu w potencjale sieciowym 99
5.4 Procedura modelowania widm sieciowych 102
6 Sieci optyczne w pułapce magnetooptycznej 105
6.1 Wprowadzenie .. 105
6.2 Obserwacja i badanie lokalizacji atomów w sieci optycznej ... 106
 6.2.1 Konfiguracja doświadczenia 106
 6.2.2 Obserwacja lokalizacji atomów w sieci optycznej 106
 6.2.3 Dyskusja kształtu rejestrowanych widm 107
 6.2.4 Dyskusja sytuacji fizycznej 109
 6.2.5 Modelowanie widm sieciowych 112
 6.2.6 Wpływ wiązka pułapkujących na sieć optyczną 113
6.3 Podsumowanie .. 115

Podsumowanie ... 117
<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Zależność widm od polaryzacji wiązek diagnostycznych</td>
<td>119</td>
</tr>
<tr>
<td>B Makroskopowa obserwacja ruchu atomów</td>
<td>125</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>127</td>
</tr>
</tbody>
</table>
Podziękowania

Chciałabym serdecznie podziękować Panu prof. dr hab. Wojciechowi Gawlikowi za opiekę i wszelką pomoc podczas czterech lat moich studiów doktoranckich. Dziękuję za stworzenie atmosfery pracy naukowej, niezwykle cenne wskazówki, sugestie, inspirujące pytania, pomysły i dyskusje na temat eksperymentu i fizyki w ogóle. Dzięki Panu poznalam niezwykle pasjonującą jej dziedzinę i przeżyłam z nią niezapomnianą przygodę.

Składam serdeczne podziękowania Panu dr hab. Jerzemu Zachorowskiemu za jego nieocenioną pomoc i wskazówki, które zawsze prowadziły do rozwiązywania najtrudniejszych nawet problemów eksperymentalnych i interpretacyjnych. Dziękuję za życzliwość i niezwykle sympatyczną atmosferyę w pokoju 359 i poza nim.

Dziękuję mojemu Mężowi Tomkowi za wszystkie lata wspólnej pracy, okazaną pomoc i cierpliwość oraz wszelkie wsparcie. Jestem Ci niezwykle za wszystko wdzięczna.

Dziękuję wszystkim współpracownikom z naszej grupy: Michałowi Zawadzie, Andrzejowi Nodze, Pawłowi Krukowi, Szymonowi Pustelnemu, Łęskowi Krzemieniowi i Karolinie Duś za miłą i wesołą atmosferę i za to, że zawsze mogłam na nich liczyć.

Składam podziękowania Danusi Myrek za nieocenioną pomoc przy załatwianiu wszelkich spraw oraz Panu Józefowi Fladze i Staszkowi Pajce za niezastąpione wsparcie techniczne.

Dziękuję też wszystkim innym osobom z Zakładu Fotoniki i Zakładu Optyki Atomowej za wyjątkową życzliwość i wspaniałą atmosferę.

Rozmowy z Kubą Zakrzewskim i Krzyśkiem Sachą wniosły bardzo dużo do interpretacji otrzymanych wyników, za co im bardzo dziękuję.

Jestem szczególnie wdzięczna Panu doc. dr hab. Mariuszowi Gajdzie za zainteresowanie moją pracą, ciekawe dyskusje na temat prezentowanych tu pomiarów rozkładu prędkości i zapoznanie mnie z teorią dotyczącą interpretacji tych wyników.
Streszczenie

Niniejsza praca dotyczy badań ruchu zimnych atomów we włączonej pułapce magnetooptycznej za pomocą spektroskopii ramanowskiej wysokiej zdolności rozdzielczej. Przedstawione w pracy widma absorpcji zarejestrowane zostały przy dużych odstrojeniach wiązek ramanowskich od rezonansu atomowego. Pozwoliło to na niedestruktwny pomiar własności kinetycznych atomów prawie bez ich zaburzania. W widmach absorpcji rejestrowano dwa przyczynki: rezonanse odrzutu, pochodzące od swobodnych atomów i rezonanse wibracyjne, związane z atomami zlokalizowanymi w sieci optycznej. Na podstawie zmierzonych widm wyznaczono rozkład prędkości atomów, ich temperaturę oraz badano współistnienie frakcji atomów swobodnych i zlokalizowanych w sieciach. Modelowanie teoretyczne sygnałów absorpcji dało dobrą zgodność z danymi doświadczalnymi. Badania przeprowadzone w niniejszej pracy potwierdziły, że metoda rezonansów odrzutu stosowana do diagnostyki zewnętrznych stopni swobody zimnych atomów jest uniwersalna, dokładna i powtarzalna. Dokonano również pierwszej obserwacji anizotropii rozkładu prędkości w specyficznej konfiguracji pułapki magnetooptycznej.
Wprowadzenie

Niniejsza praca poświęcona jest spektroskopowym badaniom zimnych atomów, które już od paru lat stanowią jeden z obszarów zainteresowania naszej grupy badawczej. Tego typu badania, prowadzone w wielu ośrodkach na świecie, są niezwykle atrakcyjne ze względu na własności zimnych atomów. Pozwalają one na obserwację wielu nowych zjawisk, które były tradycyjnie trudne do zmierzenia lub wręcz niemożliwe w standardowo stosowanych ciepłych próbkach atomowych. Przykładowo, omawiane w tej pracy rezonanse odrzutu mają obserwowalną amplitudę tylko wtedy, gdy rozkład prędkości jest wystarczająco wąski, czyli dla odpowiednio niskich temperatur. Warto zwrócić uwagę, że w porównaniu do typowej próżni termicznej, w której ruch atomów jest na ogół czynnikiem zaburzającym mierzone widma przez poszerzenie dopplerowskie, w zimnych atomach właśnie ten ruch jest źródłem „subnaturalnie” wąskich rezonansów odrzutu w widmach spektroskopowych. Inną obserwacją nowych rezonansów związanych z zimnymi atomami są widma absorpcji wiązki próbkującej rejestrowane w sieciach optycznych. Lokalizacja atomów umożliwia m.in. badanie uporzadkowanych struktur atomowych, występujących bez typowych dla zwykłych kryształów oddziaływań krótkoziemowych. Zimne atomy są więc źródłem dodatkowej informacji o otaczającym świecie i zachodzących w nim zjawiskach, a ich badanie jest zadaniem fascynującym samym w sobie. Znaczenie poznawcze tych badań wynika m.in. z ich interdyscyplinarnego charakteru i fundamentalnego znaczenia dla wielu działów fizyki (fizyki atomowej, materii skondensowanej, mechaniki kwantowej, termodynamiki itd.). Szczególnie ważne pod tym względem są m.in. niedawne prace dotyczące zjawisk nadprzewodnictwa [1] i nadciekłości [2]-[4]. Jednym z najważniejszych osiągnięć fizyki zimnych atomów jest uzyskanie kondensatu Bosego-Einsteina [5]-[8], umożliwiającego badanie efektów kwantowych w makroswiecie. Laserowe chłodzenie i pułapkowanie otworzyły te możliwości manipulowania pojedynczymi atomami [9] i prowadzenia badań z zakresu kwantowej elektrodynamiki w mikrownękach rezonansowych [10]-[12].

Okazuje się jednak, że spektroskopia zimnych atomów pozwala nie tylko na obserwację ciekawych zjawisk, ale może być także metodą diagnostyką samej zimnej próbki atomowej. Laserowe chłodzenie i pułapkowanie wykorzystuje bowiem sprzężenie pomiędzy wewnętrznymi a zewnętrznymi stopniami swobody atomów. Absorpcji i emisji fotonu o wektorze falowym \mathbf{k} towarzyszy odrzut atomu, związany ze zmianą jego pędu o $\pm \hbar \mathbf{k}$. Dodatkowo, silnie niezeronsowe pola świetlne o niezero-
wym gradiencie natężenia sprawiają, że energia potencjalna atomu związana z jego wewnętrznymi stopniami swobody ulega przestrzenniej modulacji, tworząc studnie potencjału, w których może dochodzić do przestrzennego ograniczenia i kwantyzacji ruchu atomu. Dzięki tym zjawiskom można w kontrolowany i wydajny sposób wpływać na ruch atomów przez doprowadzenie do ich oddziaływania z wiązkami światła. Z drugiej strony, ruch ten nie pozostaje bez wpływu na pola światlne. Fotony tych pól, w zależności od ruchu atomów, mogą być absorbowane bądź emitowane. Mierząc, jak atomy modyfikują światło z nimi oddziałujące, można badać własności ich ruchu.

Celem niniejszej pracy było stworzenie metody niedestruktYWnej pomiaru temperatury i rozkładu prędkości zimnych atomów w pulapce magnetooptycznej. Znajomość tych wielkości jest ważnym elementem przy przygotowaniu zimnych atomów do dalszych badań, w tym również do kondensacji Bosego-Einsteina. Zadanie to zostało spełnione. Badania i ich wyniki przedstawione w tej pracy wykazują, że możliwa jest diagnostyka zimnej próbki atomowej poprzez pomiar widm absorpcji wiązki próbkującej w układzie spektroskopii ramanowskiej. Dodatkowo wykazano, że w bardzo prosty sposób można wytworzyć jednowymiarowe sieci optyczne lokalizujące zimne atomy w działającej pułapce. Otwiera to możliwość badania współistnienia w takim układzie frakcji termicznej i zlokalizowanej.
Struktura pracy jest następująca:

Rozdział 1 zawiera podstawowe informacje dotyczące rejestrowanych w próbie zimnych atomów tzw. rezonansów odrzutu. Przedstawiona jest interpretacja tych rezonansów w przestrzeni położen i przestrzeni pędów. Następnie obliczony jest kształt rezonansu odrzutu. Dyskusja tego sygnału prowadzi do wniosku, że może on służyć do pomiaru temperatury zimnych atomów, a także do wyznaczania ich rozkładu prędkości w różnych kierunkach i jego ewentualnej anizotropii.

Rozdział 2 opisuje układ eksperymentalny, koncentrując się na tych jego cechach, które umożliwiły prowadzenie badań spektroskopii ramanowskiej daleko od rezonansu i rejestrację wyników prezentowanych w tej pracy.

Rozdział 3 krótko przypomina widma absorpcji i mieszania czterech fal uzyskane z działającą pułapką magnetooptyczną i ich interpretację, pochodzącą z wcześniejszej pracy doktorskiej [20]. Przedstawione są następnie nowe widma, uzyskane przy włączonych wiązkach chłodzących atomy, ale wyłączonym kwadrupolowym polu magnetycznym. Te wyniki potwierdzają tęzę o wpływie kwadrupolowego pola magnetycznego pułapki na poszerzenie rejestrowanych widm.

Rozdział 4 ukazuje kolejne kroki na drodze wypracowania niedestruktywnej, dokładnej i powtarzalnej metody pomiaru temperatury i rozkładu prędkości zimnych atomów we włączonej pułapce magnetooptycznej. Przedstawione są widma absorpcji wiązki próbującej przeszkodzającej przez znajdującą się we włączonej pułapce magnetooptycznej chmurę zimnych atomów zmierzone w sytuacji, gdy do pułapki wprowadzono dodatkowe wiązki odstronne daleko od przejścia atomowego i częstotliwości wiązek pułapkujących. Zaprezentowane są wyznaczone za pomocą tych widm zależności temperatury atomów od różnych parametrów pułapki. Pokazane są również przykłady wyznaczania rozkładów prędkości zimnych atomów odpowiadającym różnym warunkom doświadczalnym, w tym również sytuacji braku równowagi termodynamicznej. Wreszcie przedstawione są pierwsze znane nam pomiary anizotropii rozkładu prędkości przeprowadzone we włączonej pułapce magnetooptycznej i ich porównanie z przewidywaniami teoretycznymi. Wszystkie zaprezentowane wyniki potwierdzają wnioski z rozdziału 1, że rezonanse odrzutu mierzone poza rezonansem mogą być wykorzystane jako niedestruktywna, czuła, niezaburzająca mierzonej próbki, a jednocześnie stosunkowo prosta metoda diagnostyki spułapkowanych atomów.

Rozdział 5 przedstawia prostą teorię jednowymiarowej sieci optycznej i przejść ramanowskich zachodzących pomiędzy poziomami wibracyjnymi zlokalizowanych w mikropotencjałach tej sieci atomów. Te rozwiązania pozwalają na modelowanie kształtu rezonansów wynikających z tych przejść.

Rozdział 6 dotyczy obserwacji i badania jednowymiarowych sieci optycznych wytworzonych w pułapce magnetooptycznej poprzez wprowadzenie do niej dodatkowej pary przeciwobiegowych wiązek laserowych. Był to jeden z etapów opracowania metodyki pomiarów temperatury omówionych w rozdziale 4, ale zasługuje na osobne potraktowanie ze względu na przedstawioną możliwość sterowania parametrami sieci poprzez zmianę parametrów pułapki. Zmierzone widma wibracyjne porównane są z wynikami symulacji opartych na rozważaniach z rozdziału 5.
W pracy zamieszczono również dwa dodatki.

Dodatek A prezentuje szereg widm absorpcji wiązki próbującej, oddziałującej z wiązkami pompującymi o różnej polaryzacji.

Dodatek B zawiera zdjęcia chmury zimnych atomów ^{85}Rb w sytuacji, gdy wiązki pułapkujące są odjustowane od optymalnej konfiguracji i krótką interpretację zaobserwowanych kształtów.
Rozdział 1

Rezonanse odrzutu

1.1 Wprowadzenie

1. Rezonans odrzutu

1.2 RIR w przestrzeni pędów

Niniejszy paragraf poświęcony jest obliczeniu sygnału rezonansów odrzutu w oparciu o kwantowomechaniczny opis przejść ramanowskich między różnymi stanami pędowymi atomów w wyniku wymuszonej redystrybucji fotonów pomiędzy dwiema wiązkami światła.

1.2.1 Hamiltonian oddziaływania

Przedstawione w tym paragrafie wyprowadzenie jest wzorowane na pracę [25]. Jego celem jest znalezienie postaci hamiltonianu dla atomu dwupoziomowego oddziałującego jednocześnie z dwiema wiązkami światła przy uwzględnieniu jego zewnętrznych stopni swobody. Wiązki te opisane są przez wektory falowe k_1 i k_2, częstości odpowiednio ω_1 i ω_2, amplitudy E_1 i E_2 i polaryzacje $\hat{\epsilon}_1$ i $\hat{\epsilon}_2$. Wypadkowe pole świetlne zapisujemy jako

$$E(r, t) = \hat{\epsilon}_1 E_1 \cos(k_1 \cdot r - \omega_1 t) + \hat{\epsilon}_2 E_2 \cos(k_2 \cdot r - \omega_2 t)$$

(1.1)

$$= \frac{\hat{\epsilon}_1 E_1}{2} e^{i(k_1 \cdot r - \omega_1 t)} + \frac{\hat{\epsilon}_2 E_2}{2} e^{i(k_2 \cdot r - \omega_2 t)} + c.c.$$ (1.2)

Hamiltonian swobodnego atomu dwupoziomowego o stanie podstawowym $|g\rangle$ i wzbudzonym $|e\rangle$ ma postać

$$H_0 = \frac{p^2}{2m} + \hbar \omega_g |g\rangle \langle g| + \hbar \omega_e |e\rangle \langle e|.$$ (1.3)

W powyższym wzorze p oznacza całkowity pęd atomu, m jego masę, $\hbar \omega_g$ jest energią stanu podstawowego a $\hbar \omega_e$ energią stanu wzbudzonego. Pierwszy składnik powyższego wzoru opisuje więc energię kinetyczną atomu a pozostałe dwa - energię jego stanów wewnętrznych. Dla wygody przyjmijmy poziom energii stanu wzbudzonego $\hbar \omega_e = 0$, co daje

$$H_0 = \frac{p^2}{2m} - \hbar \omega_0 |g\rangle \langle g|,$$ (1.4)

gdzie $\hbar \omega_0$ oznacza różnicę energii stanów wewnętrznych atomu.

Oddziaływanie atomu z polem świetlnym opisuje potencjał oddziaływania V_{int}, który w przybliżeniu dipolowym zapisujemy jako

$$V_{int} = -d \cdot E(r, t),$$ (1.5)

gdzie $d = -q_e r$ jest operatorem momentu dipolowego, a $q_e > 0$ oznacza ładunek elementarny. Dla zdefiniowanego powyżej atomu dwupoziomowego V_{int} wynosi

$$V_{int} = -\left[|g\rangle \langle d \cdot E(r, t)|e\rangle + |e\rangle \langle e|d \cdot E(r, t)|g\rangle \right],$$ (1.6)

gdzie skorzystaliśmy z faktu, że oddziaływanie elektryczne dipolowe nie sprzęga stanów o tej samej parzystości. W powyższym równaniu $b = |g\rangle \langle e|$ jest operatorem przejścia atomu ze stanu wzbudzonego do podstawowego, natomiast $b^\dagger = |e\rangle \langle g|$ jest operatorem do niego sprzężonym, to znaczy indukującym przejścia ze stanu podstawowego do wzbudzonego. W przybliżeniu dipolowym hamiltonian oddziaływania
przyjmuje postać

\[V_{\text{int}} = \left[\frac{b + b^\dagger}{2} (\langle e|d \cdot \hat{\varepsilon}_1|g\rangle) E_1 (e^{-ik_1 \cdot r} e^{i\omega_1 t} + e^{ik_1 \cdot r} e^{-i\omega_1 t}) \\
+ \frac{b + b^\dagger}{2} (\langle e|d \cdot \hat{\varepsilon}_2|g\rangle) E_2 (e^{-ik_2 \cdot r} e^{i\omega_2 t} + e^{ik_2 \cdot r} e^{-i\omega_2 t}) \right] . \]

(1.7)

Stosując przybliżenie rezonansowe można zaniedbać w powyższym wzorze wszystkie czlony postaci \(be^{-i\omega t} \) i \(b^\dagger e^{i\omega t} \), gdyż odpowiadają one zaniechany procesem deekscytacji atomu z pochłonięciem fotonu oraz wzbudzenia atomu przez emisję fotonu. Otrzymujemy w takim razie

\[V_{\text{int}} = -\langle e|d \cdot \hat{\varepsilon}_1|g\rangle \frac{E_1}{2} \left(be^{-ik_1 \cdot r} e^{i\omega_1 t} + b^\dagger e^{ik_1 \cdot r} e^{-i\omega_1 t} \right) \\
- \langle e|d \cdot \hat{\varepsilon}_2|g\rangle \frac{E_2}{2} \left(be^{-ik_2 \cdot r} e^{i\omega_2 t} + b^\dagger e^{ik_2 \cdot r} e^{-i\omega_2 t} \right) \]

(1.8)

gdzie \(\Omega_i \) oznacza częstość Rabiego związaną z \(i \)-tą wiązką

\[\Omega_i = -\langle e|d \hat{\varepsilon}_i|g\rangle \frac{E_i}{\hbar}. \]

(1.9)

Zajmiemy się obecnie ewolucją czasową naszego układu. W tym celu podstawiamy hamiltonian \(H = H_0 + H_{\text{int}} \) dany równaniami (1.4) i (1.8) do równania Schrödingera

\[i\hbar \frac{\partial}{\partial t} |\Psi\rangle = H |\Psi\rangle. \]

(1.10)

Rozważany hamiltonian zawiera wielkości związane nie tylko z ruchem elektronów w atomie, ale również z ruchem atomu jako całości. Wektor stanu \(|\Psi\rangle \) opisuje więc nie tylko wewnętrzny stan atomu, związany z jego konfiguracją elektronową, ale także jego zewnętrzne stopnie swobody. Można go w takim razie zapisać jako kombinację liniową postaci

\[|\Psi\rangle = |\Psi_g\rangle |g\rangle + |\Psi_e\rangle |e\rangle, \]

(1.11)

gdzie stany elektronowe \(|g\rangle \) i \(|e\rangle \) są normalizowane i niezależne od czasu, a przez \(|\Psi_g\rangle \) i \(|\Psi_e\rangle \) oznaczamy stany zewnętrznych stopni swobody, odpowiadające stanom \(|g\rangle \) i \(|e\rangle \). Ponieważ \(|g\rangle \) i \(|e\rangle \) nie zależą od czasu, a \(|\Psi\rangle \) w ogólności od czasu zależy, cała zależność czasowa naszego układu zawarta jest w stanach \(|\Psi_g\rangle \) i \(|\Psi_e\rangle \). Po podstawieniu równania (1.11) do równania Schrödingera i skorzystaniu z ortogonalności stanów \(|g\rangle \) i \(|e\rangle \) otrzymujemy

\[i\hbar \frac{\partial}{\partial t} \left(|\Psi_g\rangle |g\rangle + |\Psi_e\rangle |e\rangle \right) = \\
\frac{p^2}{2m} \left(|\Psi_g\rangle |g\rangle + |\Psi_e\rangle |e\rangle \right) - \hbar \omega_0 |\Psi_g\rangle |g\rangle \\
+ \frac{\hbar \Omega_1}{2} \left(e^{-ik_1 \cdot r} e^{i\omega_1 t} |\Psi_e\rangle |g\rangle + e^{ik_1 \cdot r} e^{-i\omega_1 t} |\Psi_g\rangle |e\rangle \right) \\
+ \frac{\hbar \Omega_2}{2} \left(e^{-ik_2 \cdot r} e^{i\omega_2 t} |\Psi_e\rangle |g\rangle + e^{ik_2 \cdot r} e^{-i\omega_2 t} |\Psi_g\rangle |e\rangle \right). \]

(1.12)
Ponieważ stany \(|g\rangle \) i \(|e\rangle \) są liniowo niezależne, można niezależnie porównać wyrażenia stojące przy nich w równaniu (1.12), otrzymując

\[
i\hbar \hbar \frac{\partial}{\partial t} |\Psi_g\rangle = \frac{p^2}{2m} |\Psi_g\rangle - \hbar \omega_0 |\Psi_g\rangle + \frac{\hbar \Omega_1}{2} e^{-i k_1 \cdot r} e^{-i \omega_1 t} |\Psi_e\rangle + \frac{\hbar \Omega_2}{2} e^{-i k_2 \cdot r} e^{-i \omega_2 t} |\Psi_e\rangle,
\]

(1.13)

\[
i\hbar \hbar \frac{\partial}{\partial t} |\Psi_e\rangle = \frac{p^2}{2m} |\Psi_e\rangle + \frac{\hbar \Omega_1}{2} e^{i k_1 \cdot r} e^{-i \omega_1 t} |\Psi_g\rangle + \frac{\hbar \Omega_2}{2} e^{i k_2 \cdot r} e^{-i \omega_2 t} |\Psi_g\rangle.
\]

(1.14)

jest to układ sprzężonych równań różniczkowych cząstkowych. Pierwszym etapem jego rozwiązania jest przemnożenie obu stron równania (1.13) przez czynnik fazowy postaci \(e^{-i \omega_1 t} \). Jest to równoważne z przesunięciem w fazie wektora stanu \(|\Psi_g\rangle \) o liniowo zależny od czasu kąt \(\varphi(t) = \omega_1 t \). Zauważmy dodatkowo, że

\[
i\hbar e^{-i \omega_1 t} \frac{\partial}{\partial t} |\Psi_g\rangle = i\hbar \frac{\partial}{\partial t} |\Psi_g\rangle - \hbar \omega_1 e^{-i \omega_1 t} |\Psi_g\rangle,
\]

(1.15)

Po wprowadzeniu oznaczenia na przesunięty w fazie o kąt \(\omega_1 t \) wektor stanu

\[
|\tilde{\Psi}_g\rangle = e^{-i \omega_1 t} |\Psi_g\rangle
\]

(1.16)
i skorzystaniu ze związku (1.15) otrzymujemy

\[
i\hbar \frac{\partial}{\partial t} |\tilde{\Psi}_g\rangle = \frac{p^2}{2m} |\tilde{\Psi}_g\rangle + \hbar \delta_1 |\tilde{\Psi}_g\rangle + \frac{\hbar \Omega_1}{2} e^{-i k_1 \cdot r} |\Psi_e\rangle + \frac{\hbar \Omega_2}{2} e^{-i k_2 \cdot r} e^{-i \delta_1 2t} |\Psi_e\rangle,
\]

(1.17)

\[
i\hbar \frac{\partial}{\partial t} |\Psi_e\rangle = \frac{p^2}{2m} |\Psi_e\rangle + \frac{\hbar \Omega_1}{2} e^{i k_1 \cdot r} |\tilde{\Psi}_g\rangle + \frac{\hbar \Omega_2}{2} e^{i k_2 \cdot r} e^{i \delta_1 2t} |\tilde{\Psi}_g\rangle.
\]

(1.18)

gdzie \(\delta_i = \omega_i - \omega_0 \) jest odstrojeniem \(i \)-tej wiązki od rezonansu atomowego, natomiast \(\delta_{12} = \delta_1 - \delta_2 \) oznacza wzajemne odstrojenie wiązek.

Następnym etapem jest przemnożenie równań (1.17) i (1.18) przez czynnik fazowy \(e^{i \delta_{av} g} \), gdzie \(\delta_{av} = \frac{1}{2} (\delta_1 + \delta_2) \) oznacza średni odstrojenie wiązek światła od rezonansu atomowego. Zapisując wektory stanów zewnętrznych stopni swobody w układzie obracającym się z częstością \(\omega_{av} \) jako \(|\psi_g\rangle \) i \(|\psi_e\rangle \), otrzymujemy układ równań

\[
i\hbar \frac{\partial}{\partial t} |\psi_g\rangle = \frac{p^2}{2m} |\psi_g\rangle + \hbar (\delta_1 - \delta_{av}) |\psi_g\rangle + \frac{\hbar \Omega_1}{2} e^{-i k_1 \cdot r} |\psi_e\rangle + \frac{\hbar \Omega_2}{2} e^{-i k_2 \cdot r} e^{-i \delta_1 2t} |\psi_e\rangle,
\]

(1.19)

\[
i\hbar \frac{\partial}{\partial t} |\psi_e\rangle = \frac{p^2}{2m} |\psi_e\rangle - \hbar \delta_{av} |\psi_e\rangle + \frac{\hbar \Omega_1}{2} e^{i k_1 \cdot r} |\psi_g\rangle + \frac{\hbar \Omega_2}{2} e^{i k_2 \cdot r} e^{i \delta_1 2t} |\psi_g\rangle.
\]

(2.20)

Zastosujemy obecnie szereg przybliżeń znacznie upraszczających dalsze rachunki, a jednocześnie dopuszczalnych ze względu na warunki przeprowadzania pomiaru. Po
1.2. RIR w przestrzeni pędów

Pierwsze, z powyższych równań widać, że oba rozważane stany związane z ruchem atomu jako całości ewoluują w czasie w zupełnie inny sposób. Stan podstawowy $|\psi_g\rangle$ zmienia się w skali czasowej zadanej przez $1/(\delta_1 - \delta_{\text{avg}})$, a stan wzbudzony $|\psi_e\rangle$ ewoluje z częstotliwością średniego odstrojenia laserów od przejścia atomowego δ_{avg}. W typowym pomiarze widm odrzutu maksymalna wartość względnego odstrojenia laserów $\delta_{1/2}$ jest rzędu $2\pi \cdot 0.5$ MHz, a $\delta_{\text{avg}} \approx 2\pi \cdot 140$ MHz. Częstotliwość oscylacji stanu wzbudzonego jest więc znacznie większa od częstotliwości dla stanu podstawowego, jak również od szerokości naturalnej przejścia $\Gamma \approx 2\pi \cdot 5.98$ MHz. Oscylacje stanu wzbudzonego są wygaszane w czasie rzędu $1/\Gamma \approx 27$ ns, zaniedbywalnym krótkim w skali ewolucji stanu podstawowego. W takim razie uzasadnione jest przybliżenie, że zmiany stanu górnego zewnętrznych stopni swobody w porównaniu z czasem ewolucji stanu $|\psi_g\rangle$ są bardzo szybko tłumione, a więc w każdej chwili czasu możemy przyjąć, że $\frac{\partial}{\partial t}|\psi_e\rangle = 0$. Oznacza to, że rozpatrujemy jedynie procesy absorpcja-emisja wymuszone, a zaniedbujemy pojedynczy proces samej absorpcji. Powyższa procedura nosi nazwę adiabatycznej eliminacji stanu wzbudzonego. Zauważmy, że jest to jedyny punkt w naszych rozważaniach, w którym rozpatrujemy emisję spontaniczną. Dotychczas braliśmy pod uwagę jedynie procesy wymuszone. Takie podejście jest dobrym przybliżeniem przy założeniu, że wiązki światła są daleko odstrojone od rezonansu atomowego: $\delta_1 = \omega_1 - \omega_0 \gg \Gamma$ oraz $\delta_2 = \omega_2 - \omega_0 \gg \Gamma$, gdzie Γ oznacza stałą zaniku stanu wzbudzonego.

Kolejne przybliżenie wynika z faktu, że dla atomów w pułapce spełniona jest nierówność $p^2/2m \ll \hbar \delta_{\text{avg}}$, co pozwala zredukować rozwiązanie równania (1.20) dla stanu wzbudzonego do postaci

$$
|\psi_e\rangle = \frac{1}{\hbar \delta_{\text{avg}}} \left(\frac{\hbar \Omega_1}{2} e^{i k_1 \cdot r} |\psi_g\rangle + \frac{\hbar \Omega_2}{2} e^{i k_2 \cdot r} e^{i \delta_{1/2} t} |\psi_g\rangle \right).
$$

Podstawiając teraz (1.21) do równania ewolucji stanu podstawowego (1.19) dostajemy

$$
i \hbar \frac{\partial}{\partial t} |\psi_g\rangle = \frac{p^2}{2m} |\psi_g\rangle + \hbar (\delta_1 - \delta_{\text{avg}}) |\psi_g\rangle + \frac{\hbar \Omega_1}{4 \delta_{\text{avg}}} \left(\Omega_1 + \Omega_2 e^{-i(k_1-k_2) \cdot r} e^{i \delta_{1/2} t} \right) |\psi_g\rangle + \frac{\hbar \Omega_2}{4 \delta_{\text{avg}}} \left(\Omega_1 e^{i(k_1-k_2) \cdot r} e^{-i \delta_{1/2} t} + \Omega_2 \right) |\psi_g\rangle.
$$

Wprowadźmy teraz dwa nowe oznaczenia:

$$
\omega_{AC} = \left(\Omega_1^2 + \Omega_2^2 \right) / 4 \delta_{\text{avg}}
$$

to dynamiczne przesunięcie Starka stanów związanych z ruchem atomu w wyniku oddziaływania z polem światłowym dwóch wiązek światła, natomiast

$$
\Omega_R = \Omega_1 \Omega_2 / 2 \delta_{\text{avg}}
$$

oznacza efektywną częstość Rabiego wymuszonych przejść ramanowskich pomiędzy stanami atomu związanymi z jego zewnętrznymi stopniami swobody. Wykorzystując te oznaczenia możemy napisać

$$
i \hbar \frac{\partial}{\partial t} |\psi_g\rangle = \frac{p^2}{2m} |\psi_g\rangle + \hbar (\delta_1 - \delta_{\text{avg}} + \omega_{AC}) |\psi_g\rangle + \frac{\hbar \Omega_R}{2} \left(e^{-i(k_1-k_2) \cdot r} e^{i \delta_{1/2} t} + e^{i(k_1-k_2) \cdot r} e^{-i \delta_{1/2} t} \right) |\psi_g\rangle.
$$
Ponieważ drugi składnik powyższego wzoru odpowiada za przesunięcie energii, które ma tę samą wartość dla wszystkich poziomów kinetycznych, można bez utraty ogólności przyjąć tę wartość za zerową\(^1\). Trzeci składnik wzoru zawiera natomiast czynniki postaci \(e^{\pm i(k_1-k_2)\cdot r}\), odpowiadające za zwiększenie lub zmniejszenie pędu atomu w wyniku oddziaływania z dwiema wiązkami światła. Te czynniki to operatory zmiany pędu atomu, albo inaczej: kreacji i anihilacji atomu w stanie własnym \(|\Psi_p\rangle\) operatora pędu \(p\). Działają one na stany pędowe według następującego przepisu:

\[
\begin{align*}
& e^{i(k_1-k_2)\cdot r} |\Psi_p\rangle = |\Psi_{p-(k_1-k_2)}\rangle, \\
& e^{-i(k_1-k_2)\cdot r} |\Psi_p\rangle = |\Psi_{p+(k_1-k_2)}\rangle.
\end{align*}
\]

(1.26)

Rozważmy teraz przejścia pomiędzy różnymi stanami pędowymi atomu, zakładając na razie dla uproszczenia, że atom może znajdować się jedynie w dwóch różnych \(\Delta p\). W przypadku, gdy \(\Delta p \neq \pm \hbar(k_1 - k_2)\) (górny znak odpowiada przypadkowi, gdy absorbowana jest wiązka o wektorze falowym \(k_1\)), wszystkie elementy macierzowe rozwijających operatorów są równe zero. Stany pędowe nie są ze sobą sprzężone i ewoluują swobodnie. Jest to przejawem zasady zachowania pędu: przejście jest możliwe tylko wtedy, gdy przekaz pędu od wiązek światła równy jest zmianie pędu atomu: \(\Delta p = \pm \hbar(k_1 - k_2)\). Z równań (1.26) widać, że tylko dla takiego przypadku niewzbudzonego elektronowo atomu można wtedy zapisać jako

\[
|\psi_g\rangle = \alpha |\Psi_p\rangle + \beta |\Psi_{p+\Delta p}\rangle.
\]

(1.27)

W tej bazie można wprowadzić reprezentację macierzową operatorów stanów pędowych. W przypadku, gdy \(\Delta p \neq \pm \hbar(k_1 - k_2)\) (górny znak odpowiada przypadkowi, gdy absorbowana jest wiązka o wektorze falowym \(k_1\)), wszystkie elementy macierzowe rozwijających operatorów są równe zero. Stany pędowe nie są ze sobą sprzężone i ewoluują swobodnie. Jest to przejawem zasady zachowania pędu: przejście jest możliwe tylko wtedy, gdy przekaz pędu od wiązek światła równy jest zmianie pędu atomu: \(\Delta p = \pm \hbar(k_1 - k_2)\). Z równań (1.26) widać, że tylko dla takiego przypadku niediagonalne elementy rozwijających operatorów są niezerowe:

\[
\langle \Psi_{p+\Delta p}|e^{-i(k_1-k_2)\cdot r}|\Psi_p\rangle = \langle \Psi_p|e^{i(k_1-k_2)\cdot r}|\Psi_{p+\Delta p}\rangle = 1.
\]

(1.28)

Równanie ruchu (1.22) przyjmuje postać

\[
i\hbar \frac{\partial}{\partial t} \left(\alpha |\Psi_p\rangle + \beta |\Psi_{p+\Delta p}\rangle \right) = \alpha \frac{p^2}{2m} |\Psi_p\rangle + \beta \frac{(p+\Delta p)^2}{2m} |\Psi_{p+\Delta p}\rangle
\]

\[
+ \frac{\Omega_R}{2} \left(\beta e^{-i\delta_1 z t} |\Psi_p\rangle + \alpha e^{i\delta_1 z t} |\Psi_{p+\Delta p}\rangle \right).
\]

(1.29)

Jest to zależne od czasu równanie Schrödingera z hamiltonianem

\[
H = \frac{p^2}{2m} |\Psi_p\rangle \langle \Psi_p| + \frac{(p+\Delta p)^2}{2m} |\Psi_{p+\Delta p}\rangle \langle \Psi_{p+\Delta p}| + \frac{\Omega_R}{2} e^{-i\delta_1 z t} |\Psi_p\rangle \langle \Psi_{p+\Delta p}| + \frac{\Omega_R}{2} e^{i\delta_1 z t} |\Psi_{p+\Delta p}\rangle \langle \Psi_p|,
\]

(1.30)

czego można łatwo spradzić podstawiając powyższe wyrażenie do równania Schrödingera (1.29).

Hamiltonian (1.30) odpowiada formalnie przypadkowi atomu dwupoziomowego o różnicy energii \((|p + \Delta p|^2 - p^2)/2m > 0\) dla przypadku ujemnego względem odstrojenia laserów \(\delta_{1,2} < 0\) albo \((|p + \Delta p|^2 - p^2)/2m < 0\) dla \(\delta_{1,2} > 0\). Przejście pomiędzy tymi poziomami jest indukowane dwufotonowym polem świetlnym o efektywnej częstości Rabiego \(\Omega_R\) (1.24). Z postaci hamiltonianu (1.30) widać, że atom pod wpływem pola świetlnego wytworzonego przez dwie wiązki laserowe zmienia swój stan pędowy z \(p\) na \(p + \Delta p\). Za tę zmianę odpowiada przejście ramanowskie polegające na absorpcji fotonu z jednej z wiązek i emisji fotonu do drugiej z nich.

\(^1\)Formalnie należałyby przeprowadzić kolejną transformację fazową.
1.2.2 Interpretacja

W poprzednim paragrafie rozważaliśmy, jak oddziaływanie atomu z dwiema wiązkami światła zmienia jego stan pędowy. Pokazaliśmy, że zmiana ta zachodzi w wyniku redystrybucji fotonów pomiędzy tymi wiązkami. Obecnie zajmiemy się bardziej intuicyjną interpretacją uzyskanych wyników, odwodząc się do konkretnej sytuacji fizycznej.

Rozważmy próbkę złożoną z dwupozycjornych zimnych atomów, w której przecinają się pod kątem \(\theta \) dwie jednakowo spolaryzowane wiązki światła: silna wiązka pompująca o wektorze falowym \(\mathbf{k}_1 = \mathbf{k} \) i częstości \(\omega_1 = \omega \) i słaba wiązka próbująca, o wektorze falowym \(\mathbf{k}_2 = \mathbf{k}_{\text{probe}} \) i częstości \(\omega_2 = \omega + \delta \), tak jak pokazano na rysunku 1.1. Zakładamy, że wiązki mają zbliżoną częstotliwość \((\delta \ll \omega) \) i tę samą polaryzacją.

Rys. 1.1: (a) Geometria wiązek indukujących przejście rezonansowe odrzutu. Wiązka próbująca (cienka strzałka) tworzy kąt \(\theta \) z wiązką pompującą (gruba strzałka). Wiązki przecinają się w chmurze zimnych atomów. Badana jest absorpcja wiązki próbującej w funkcji odsłania \(\delta \).(b) Przekaz pędu pomiędzy wiązkami a atomem w przypadku, gdy absorbowany jest foton wiązki pompującej i emitowany foton wiązki próbującej. Zmiana pędu zachodzi wzdłuż kierunku prostopadłego do dwusiecznej kąta \(\theta \), oznaczonego symbolem \(\perp \). Zmiana pędu atomu \(\Delta p = h \Delta k \) jest jednoznacznie określona przez geometrię eksperymentu, jak pokazuje rysunek 1.1 (b) a znak \(\Delta p \) zależy od kierunku zachodzenia procesu. Przykładowo, w przypadku absorpcji fotonu z wiązki pompującej i wymuszonej emisji do wiązki próbującej, po skorzystaniu z zasady zachowania pędu otrzymujemy

\[
\Delta p = p_f - p_i = \hbar (k - k_{\text{probe}}),
\]

(1.31)

gdzie \(p_i \) i \(p_f \) oznaczają odpowiednio początkowy i końcowy pęd atomu. Ze względu na fakt, że dla małego odstrojenia \(\delta \) wektory falowe obu wiązek mają w przybliżeniu równą długość, \(|k| \approx |k_{\text{probe}}| = k \), zmiana pędu atomu zachodzi zawsze wzdłuż kierunku prostopadłego do dwusiecznej kąta \(\theta \) (\(\perp \) na rysunku 1.1). Oznaczając wersor wzdłuż tego kierunku jako \(\mathbf{p}_\perp \), otrzymujemy

\[
\Delta p = -2 \hbar k \sin \frac{\theta}{2} \mathbf{p}_\perp
\]

(1.32)

\(^{2}\)Założenie o jednakowej polaryzacji wiązek okaże się kluczowe w paragrafie 1.2.5, gdy będziemy rozpatrywać atom wielopoziomowy. W przypadku atomu dwupozycjornego jest ono oczywiste.
Rozpatrując już teraz tylko kierunek \hat{p}_\perp, redukujemy zagadnienie do sytuacji jednowymiarowej. W związku z tym, równanie (1.32) zapisujemy

$$\Delta p = \Delta p_{\perp} = -2\hbar k \sin \frac{\theta}{2}. \quad (1.33)$$

Zasada zachowania pędu uzasadnia, dlaczego w poprzednim paragrafie braliśmy pod uwagę jedynie dwa stany zewnętrznych stopni swobody atomu. Rzeczywiście, dla zadanej geometrii wiązek i ustalonej różnicy częstości δ między nimi, stany pędowe sprzężane są parami. W przypadku, gdy odstrojenie pomiędzy wiązkami δ jest zmieniane podczas pomiaru, elementarne ramanowskie procesy można dodawać niezależnie, pod warunkiem, że dystrybucja pędu nie ulega zmianie podczas przeprowadzania pomiaru. Warunek ten jest w typowych sytuacjach dobrze spełniony.

Ramanowski proces wymiany fotonów pomiędzy wiązkami zachodzi w dwóch kierunkach. Rozważmy przykładowo przypadek ujemnego odstrojenia $\delta < 0$, co oznacza, że częstość wiązki próbującej jest mniejsza od ustalonej i nie zmienianej częstości wiązki pompującej. Tej sytuacji odpowiada rysunek 1.2 (a), gdzie pokazano zależność energii kinetycznej atomu od wartości składowej jego pędu wzdłuż kierunku p_{\perp} prostopadłego do dwusiecznej kąta θ pomiędzy wiązkami. Populacja poziomów pędowych zaznaczona jest symbolicznie na paraboli pęd-energia przez rozmiar kółek. W wyniku oddziaływania z wiązkami, atom o pędzie początkowym $p_{\perp}^{(i)}$ absorbuje foton z wiązki pompującej i w sposób wymuszony emituje foton do wiązki próbkującej. Z kolei atom o pędzie $p_{\perp}^{(i)} + \Delta p$ absorbuje foton z wiązki próbującej i emituje foton do wiązki pompującej. Ze względu na termiczny rozkład populacji stanów pędowych, jeden z procesów - ten zaznaczony na rysunku - dominiuje. Ponieważ emitowany jest foton o częstości wiązki próbkującej w tym procesie jest ona wzmacniana. Rozpatrując w analogiczny sposób przypadek $\delta > 0$ (rysunek...
1.2 (b) można zauważyć, że tym razem dominuje proces absorpcji wiązki próbującącej. Oba powyższe stwierdzenia można podsumować wnioskiem, że zawsze dominuje proces, w którym absorbowana jest wiązka o wyższej częściości, a więc taki, który prowadzi do wzrostu wartości bezwzględną pędu i energii kinetycznej atomu. Reasumując: gdy odstrojenie wiązki próbującej od pompującej jest dodatnie ($\delta > 0$) wiązka próbująca jest osłabiana, a dla odstrojenia ujemnego ($\delta < 0$) dochodzi do jej wzmacnienia.

Warto jeszcze zastanowić się, co dzieje się dla odstrojenia $\delta = 0$. W takim przypadku energia kinetyczna atomu nie ulega zmianie. Pomimo braku zmiany energii, zmienia się pęd atomu, to znaczy

$$\Delta E_{\text{kin}} = 0, \, \Delta p_\perp \neq 0.$$ \hfill (1.34)

Jedyną możliwą realizacją takiej sytuacji jest zmiana pędu atomu na przeciwny, równy co do modułu początkowemu. Ponieważ zmiana pędu wynosi $\Delta p = \pm 2\hbar k \sin^2 \frac{\theta}{2}$ (porównaj wzór (1.33)), przejście ramanowskie zachodzi pomiędzy stanami o pędcach $\hbar k \sin \frac{\theta}{2}$ i $-\hbar k \sin \frac{\theta}{2}$. Zakładając symetryczny, równowagowy rozkład prędkości w próżni atomowej, otrzymujemy jednakowe populacje tych stanów, a więc zerową różnicę populacji pomiędzy nimi. Prowadzi to do zerowej amplitudy sygnału rezonansowych odrzutów dla $\delta = 0$, gdyż tyle samo procesów prowadzi do wzmacnienia próbki jak do jej osłabienia. Tę sytuację przedstawia rysunek 1.3, w którym w części (a) pokazano przykładowy proces zachodzący na paraboli pęd-energy, a część (b) ukazuje schematycznie wszystkie możliwe sposoby realizacji procesów spełniających warunek (1.34).

Rys. 1.3: Ilustracja szczególnego przypadku zerowego odstrojenia, kiedy zmienia się pęd atomu, ale nie ulega zmianie jego energia kinetyczna. Część (a) rysunku pokazuje jeden z przykładowych tego rodzaju procesów na paraboli pęd-energy, a część (b) schematycznie przedstawia wszystkie możliwe sposoby realizacji takiego procesu.
1.2.3 Obliczenie sygnału

Aby obliczyć widmo absorpcji wiązki próbkującej, to znaczy zależność natężenia tej wiązki po przejściu przez chmurę zimnych atomów od jej częstotliwości, należy uśредnić wszystkie elementarne ramanowskie procesy wymiany fotoniów po całym rozkładzie pędowym. Obliczając w poprzednim paragrafie hamiltonian (1.30) wykazałyśmy, że z formalnego punktu widzenia ewolucja stanu atomu o dwóch poziomach pędowych, poddanego oddziaływaniu z dwiema wiązkami światła jest analogiczna do ewolucji dwupozycyjnego atomu oddziałującego z polem świetlnym o częstotliwości \(\delta_{12} \) (wzór 1.23), o częstości Rabiego \(\Omega_R \) danej wzorem (1.24). W takim razie pojedynczy proces zmiany pędu atomu w wyniku przejścia ramanowskiego opisany jest krzywą lorentzowską o szerokości \(2\gamma \), gdzie \(\gamma \) jest stałą zaniku populacji stanów pędowych:

\[
L(\delta, \delta_{\text{res}}, \gamma) = \frac{\gamma}{\gamma^2 + (\delta - \delta_{\text{res}})^2}.
\]

Aby wyznaczyć występującą w powyższym wzorze częstotliwość rezonansową \(\delta_{\text{res}} \) trzeba pamiętać, że wymiana fotoniów pomiędzy wiązkami prowadzi nie tylko do zmiany pędu atomu o wartość \(\Delta p \), jak wykazaliśmy poprzednio, ale także do zmiany energii kinetycznej atomu o wartość \(\Delta E_{\text{kin}} \) (rysunek 1.2). Warto zwrócić uwagę, że w przypadku termicznego obsadzenia stanów pędowych atomu jego energia kinetyczna zawsze zwiększa się (dla \(\delta \neq 0 \)), niezależnie od kierunku zachodzenia procesu wymiany fotoniów pomiędzy wiązkami. Ze względu na zasadę zachowania energii, elementarny proces ramanowski jest rezonansowy wtedy, gdy zmiana energii kinetycznej atomu jest równa wzajemnemu odstrojeniu wiązek:

\[
\Delta E_{\text{kin}} = \frac{1}{2m} \left[(p_\perp + \Delta p)^2 - p_\perp^2 \right] = \frac{2p_\perp \Delta p + \Delta p^2}{2m} = \hbar \delta_{\text{res}},
\]

gdzie \(m \) jest masą atomu. Z powyższej zależności otrzymujemy warunek

\[
\delta_{\text{res}} = \frac{2k}{m} \sin \left(\frac{\theta}{2} \right) \left(\hbar k \sin \frac{\theta}{2} - p_\perp \right).
\]

Amplituda rezonansu związanego z tym procesem jest proporcjonalna do różnicy populacji stanu końcowego i początkowego

\[
\Delta \Pi(p_\perp \text{final} - p_\perp \text{initial}) = \Pi(p_\perp + \Delta p) - \Pi(p_\perp).
\]

Ze względu na to, że poziomy pędowe należą do kontinuum, sygnał absorpcji dany jest całką postaci

\[
s(\delta) = -\int_{-\infty}^{\infty} dp_\perp \Delta \Pi(p_\perp + \Delta p, p_\perp) L(\delta, \delta_{\text{res}}, \gamma).
\]

W powyższym wyrażeniu elementarne procesy ramanowskie, których rezonansowy charakter opisuje wzór (1.35), ważne są różnicą populacji stanu końcowego i początkowego (1.38) i średniiane po całym rozkładzie pędów. Powyższa całka może zostać obliczona numerycznie, niemniej jednak wprowadzenie pewnych dobrze spełnionych przybliżeń pozwala uzyskać analityczny wzór opisujący z dużą dokładnością kształt sygnału. Po pierwsze, różnica pędu atomu w początkowym i końcowym stanie \(|\Delta p| = 2\hbar k \sin (\theta/2) \) wynosi maksymalnie \(2\hbar k \) (dla \(\theta = 180^\circ \), czyli dla wiązek...
przeciwbieżnych). Natomiast szerokość rozkładu stanów pędowych \(\sigma_p \) dla standardowych temperatur osiąganych w pułapkach MOT wynosi kilkadziesiąt \(\hbar k \), a więc
\[
\Delta p \ll \sigma_p. \tag{1.40}
\]
Zakładając ponadto, że rozkład populacji stanów pędowych jest gładką funkcją, z twierdzenia o wartości średniej możemy różnicę populacji we wzorze (1.39) zastąpić różniczką
\[
\Pi(p_\perp + \Delta p) - \Pi(p_\perp) \approx \frac{\partial \Pi}{\partial p_\perp} \Delta p. \tag{1.41}
\]
Dodatkowo, jeśli stała zaniku populacji jest wystarczająco mała w porównaniu ze średnim przesunięciem dopplerowskim
\[
\gamma \ll k \langle v \rangle \theta, \tag{1.42}
\]
krzywa lorentzowska (1.35) może zostać zastąpiona deltą Diraca
\[
\mathcal{L}(\delta, \delta_{res}, \gamma) \approx \Omega^2_R \delta D(\delta - \delta_{res})
\]
\[
= \delta D \left(\delta - \frac{2 k}{m} \sin \frac{\theta}{2} \left(\hbar k \sin \frac{\theta}{2} - p_\perp \right) \right)
\]
\[
= \frac{m}{2 k \sin \frac{\theta}{2}} \delta D \left(p_\perp - \left(\hbar k \sin \frac{\theta}{2} - \frac{\delta m}{2 k \sin \frac{\theta}{2}} \right) \right). \tag{1.43}
\]
Przybliżenie (1.42) oznacza, że wymagamy, aby zasada zachowania energii była dokładnie spełniona. Jego stosowalność zostanie omówiona w paragrafie 1.2.5. Podstawiając wyrażenia (1.41) i (1.43) do całki (1.39) i oznaczając wartość rezonansową pędu w argumencie delty Diraca (1.43) przez
\[
p_{res} = \hbar k \sin \frac{\theta}{2} - \frac{\delta m}{2 k \sin \frac{\theta}{2}} \tag{1.44}
\]
otrzymujemy postać sygnału rezonansów odrzutu
\[
s(\delta) = \Omega^2_R \hbar m \left. \frac{\partial \Pi}{\partial p_\perp} \right|_{p_\perp = p_{res}}. \tag{1.45}
\]

1.2.4 Dyskusja kształtu sygnału odrzutu

Zgodnie z intuicyjnymi przewidywaniami amplituda sygnału odrzutu jest tym większa, im bardziej różnią się miedzy sobą populacje początkowych i końcowych stanów pędowych. Potwierdza to wzór (1.45) pokazujący, że kształt sygnału \(s(\delta) \) zależy od rozkładu populacji stanów pędowych \(\Pi(p) \), a dokładniej od jego pochodnej. Pomiar rezonansów odrzutu może więc służyć do wyznaczania rozkładu prędkości w zimnej próbce atomowej. Rozkład ten otrzymuje się poprzez znalezienie funkcji pierwotnej do zmierzonego w eksperymencie sygnału rezonansu odrzutu. Należy zwrócić uwagę na podkreślany już poprzednio fakt, że przekaz pędu od wiązek świetlnych do atomu zachodzi zawsze wzdłuż kierunku prostopadłego do dwusiecznej kąta pomiędzy nimi. To oznacza, że tak przeprowadzony pomiar jest czuły jedynie na jedną ze

\[3\] W przypadku równowagi termodynamicznej \(\langle v \rangle = u_T \) dane wzorem (1.48).
składowych prędkości atomu, mianowicie na tę wzdłuż kierunku p_\perp. Zmiana geometrii wiązek pozwala badać rozkłady prędkości atomów wzdłuż różnych kierunków, co jest szczególnie cenne w przypadku, gdy w próbie atomowej występuje pewna anizotropia prędkości. Ta metoda została dokładnie omówiona w rozdziale 4 dotyczącym wyników doświadczalnych. Trzeba pamiętać, że jest ona przydatna jedynie dla wystarczająco zimnych próbek atomowych, gdyż tylko w takim przypadku ich rozkład prędkości jest na tyle wąski, że sygnał odrzutu dany przez pochodną tego rozkładu jest mierzylny.

W równowadze termodynamicznej jednowymiarowy rozkład prędkości dany jest unormowanym rozkładem Maxwella-Boltzmanna:

$$\Pi(p) = (2\pi k_B T m)^{-\frac{1}{2}} \exp \left[-\frac{p^2}{2mk_B T} \right],$$

(1.46)

W takim przypadku zależność (1.45) daje

$$s(\delta) = -\sqrt{\frac{m}{2\pi}} \frac{h\delta}{2u_T^{3/2}} \frac{\exp \left[-\frac{\delta^2}{2u_T^2(2k \sin (\theta/2))^2} \right]}{k_B T},$$

(1.47)

gddie

$$u_T = \sqrt{k_B T/m},$$

(1.48)

jest szerokością rozkładu prędkości, związaną z definicjonalną w równowadze termodynamicznej temperaturą T.

Śledząc uważnie sposób obliczania sygnału rezonansów odrzutu można dostrzec fakt pominięcia czlomu $\hbar k \sin^2 (\theta/2)$ występującego we wzorze (1.44) w ostatecznym wyniku (1.47) na $s(\delta)$. Uwzględnienie tego czlonu prowadziłoby do niezerowego sygnału dla zerowego odstrzenia. W dyskusji pod koniec paragrafu 1.2.2 pokazaliśmy, że taka sytuacja nie występuje dla symetrycznego rozkładu prędkości (a taki założiliśmy przyjmując wzór (1.46)). Człon $\hbar k \sin^2 (\theta/2)$ występujący we wzorze (1.47) na sygnał absorpcji byłby jedynie artefaktem matematycznym, wynikającym z zastosowania przybliżenia (1.41).

Obliczony powyżej sygnał (1.47) przedstawiony na rysunku 1.4 jest pochodną funkcji Gaussa. W ogólności, gdy rozkład prędkości atomów jest inny niż Maxwella-Boltzmanna (1.46) (nie jest równowagowy), sygnał odrzutu jest pochodną tego zadanego rozkładu. W omawianym tutaj przypadku równowagi termodynamicznej sygnał przyjmuje wartość minimalną dla $\delta_- = 2ku_T \sin(\theta/2)$ i maksymalną dla $\delta_+ = -2ku_T \sin(\theta/2)$. Szerokość sygnału $w = \delta_- - \delta_+$ jest proporcjonalna do pierwiastka z temperatury, co wyraża związek

$$T = \frac{m}{16k_B k \sin^2(\theta/2) w^2}.$$

(1.49)

Z powyższych rozważań wynika, że pomiar absorpcji, w którym rejestrowany jest przyczynek pochodzący od odrzutu atomowego może zostać wykorzystany jako czułe narzędzie służące do diagnozy zimnych atomów. Pozwala on wyznaczyć temperaturę takich atomów, o ile znajdują się w stanie równowagi termodynamicznej a po nadto ich rozkład prędkości. W przypadku przeprowadzenia pomiaru w odpowiedniej geometrii można również zbadać ewentualną anizotropię tego rozkładu. Wykorzystanie rezonansów odrzutu do wyznaczenia rozkładu prędkości zimnej próbki atomowej zaproponowała grupa Grynberga [23]. Pomiar ten został po raz pierwszy przeprowadzony w tej samej grupie [33]. Wstępnie schłodzone i spułapkowane atomy cezu
1.2. RIR w przestrzeni pędów

Rys. 1.4: Widmo transmisji wiązki próbującej związane z rezonansami odrzutu, dane wzorem (1.47). Wzmocnienie (absorpcja) wiązki zachodzi dla dodatniego (ujemnego) odstrojenia δ. Maksimum (minimum) sygnału występuje dla odstrojenia \(\delta = -2\kappa_T \sin (\theta/2) \) (\(\delta = -2\kappa_T \sin (\theta/2) \)). Szerokość sygnału \(w \) jest proporcjonalna do \(\sqrt{T} \).

Pewną komplikacją w zastosowaniu rezonansów odrzutu do badania temperatury (i ogólnie rozkładu prędkości) jest fakt, że we wzorze (1.49) występuje czynnik geometryczny postaci \(\sin^2(\theta/2) \). W przypadku małych kątów jest to dużym ograniczeniem dokładności pomiaru temperatury. Co prawda możliwość zastąpienia sinusu małego kąta przez wartość tego kąta jest ułatwieniem przy wyprowadzaniu wzorów, ale ze względu na szybką zmienność funkcji sinus w okolicy małych kątów \(\theta \), niewielki błąd przy pomiarze kąta pomiędzy wiązkami prowadzi do dużej niepewności pomiaru temperatury. Przykładowo, przy założeniu, że szerokość widma RIR zmienzonego dla wiązek prawie współbieżnych wynosi \(w = 15 \) kHz, dla kąta \(\theta = 4, 5 \) lub \(6^\circ \) otrzymujemy temperatury odpowiednio 71.7 \(\mu \)K, 45.9 \(\mu \)K oraz 31.9 \(\mu \)K. Rozwią-
zaniem tego problemu jest przeprowadzenie pomiaru z użyciem wiązek tworzących ze sobą kąt $180^\circ - \theta$. Tak jak pokazaliśmy w poprzednim paragrafie, wiązki w tej geometrii próbują kierunek prędkości prawie równoległy prawie równoległy do kierunku, wzdłuż którego się rozchodzą. Dla typowych wartości $\theta = 4 - 6^\circ$ przy szerokości $w = 350$ kHz otrzymujemy (w granicach błędu) jednakowe wartości temperatury $47.7 \mu K$. Taka geometria była z powodzeniem stosowana w większości prezentowanych w tej pracy pomiarów.

1.2.5 Dodatkowe uwagi

1. Przyjęte w naszych rozważaniach upraszczające założenie, że mamy do czynienia z atomami dwupoziomowymi jest oczywiście idealizacją. W rzeczywistości stan podstawowy $F_g = 3$ atomów 85Rb, których dotyczy opisywany eksperyment, ma 7 podpoziomów zeemanowskich. Taka sytuacja jest o wiele bardziej skomplikowana obliczeniowo. Efekty związane z atomem wielopoziomowym uwzględnia praca Guo i Bermana [27], ale również i tam rozważano jedynie stosunkowo prostą sytuację przejścia $F_g = 1 \rightarrow F_e = 2$. Wysoki stopień skomplikacji obliczeń związanych z wewnętrzną strukturą atomu prowadzi do trudności z dopasowaniem krzywych teoretycznych do danych doświadczalnych. Z tego względu pożądana jest taka sytuacja fizyczna, która nawet w przypadku atomu wielopoziomowego umożliwia stosowanie teorii przedstawionej w tym rozdziale. Często stosowanym rozwiązaniem jest przejście do zamkniętego układu dwupoziomowego przez przepompowanie optyczne całej populacji atomu wielopoziomowego do jednego ze skrajnych podpoziomów zeemanowskich $m_g = F_g$ albo $m_g = -F_g$ stanu podstawowego i wykorzystanie przejścia odpowiednio $m_g \rightarrow m_e = m_g + 1$ lub $m_g \rightarrow m_e = m_g - 1$. Z oczywistych powodów (brak dobrze określonej polaryzacji wypadkowego pola wiązek pulapujących) użycie tej metody w działającej pulapce magnetooptycznej jest niemożliwe. Można natomiast wykorzystać fakt, że omawiana metoda spektroskopowa dotyczy przejść ramanowskich. Użycie wiązek pompującej i próbującej o tej samej polaryzacji umożliwia potraktowanie złożonej struktury atomu jako zbioru kilku niezależnych układów dwupoziomowych, identycznych z punktu widzenia przejść ramanowskich z $\Delta m_F = 0$. Taka metoda została wykorzystana w naszym eksperymentecie i opisana w rozdziale 4.

2. Warto zauważyć, że przedstawiona powyżej interpretacja rezonansów odrzutu ma analogię [23] w efekcie Comptona. W tym ostatnim przypadku rozważa się ugięcie i zmianę częstości światła padającego na poruszające się swobodnie centrum rozpraszania. Zasady zachowania energii i pędu sprawiają, że częstość i kierunek światła rozproszonego przyjmują określone wartości. Z kolei rezonanse odrzutu są procesem wymuszanym, w którym zarówno częstość jak i kierunek fotonów są zadane dla obu wiązek – padającej i rozproszonej. To sprawia, że światło może sprzęgać ze sobą jedynie określone poziomy pędowe atomów i prowadzi do struktur rezonansowych w widmach transmisji wiązki. Rezonanse odrzutu można więc traktować jako optyczne wymuszone rozproszanie comptonowskie [35].

3. Dyskusja założenia (1.42). Warunek ten gwarantuje otrzymanie dużej amplitudy sygnału rezonansów odrzutu oraz pozwala zastąpić krzywą lorentzowską (1.35) deltą Diraca (1.43). Przyjęte założenie jest w omawianych warunkach
eksperymentalnych dobrze spełnione. Świadczy o tym fakt, że nawet najwęż-
sze rejestrowane w naszym doświadczeniu widma rezonansów odrzutu (roz-
dział 4) o szerokości $w \approx 12$ kHz mają kształt pochodnej z funkcji Gaussa
(1.47). Gdyby stała γ była tego samego rzędu co w, rejestrowany sygnał byłby
pochodną splotu rezonansu gaussowskiego i lorentzowskiego. Można w takim
razie przyjąć, że $\gamma \ll 2\pi \cdot 12$kHz. Wyjaśnieniem tak długich czasów życia jest
fakt, że rezonanse odrzutu zachodzą pomiędzy stanami pędowymi dolnego,
długożyciowego stanu atomowego. Pojedynczy odrzut $\hbar k$ jest niewielki z po-
równaniu z szerokością rozkładu pędów (paragraf 1.2.3). Aby wydajnie zmienić
stan pędowy atomu w wyniku błądzenia przypadkowego potrzeba około 10^3
cykli absorpcji-emisji wymuszonej [24].
1. Rezonans odrzutu

1.3 RIR w przestrzeni położen

1.3.1 Opis teoretyczny

W pierwszej części tego rozdziału wykazaliśmy, że rezonansy odrzutu są wynikiem wymuszonego rozpraszanias ramanowskiego w przestrzeni pędów. Obecnie pokażemy, że procesy RIR można również rozumieć jako wymuszone rozpraszanie Rayleigha na siatce gęstości atomów. Te dwie równoważne interpretacje podane zostały we wspomnianej już publikacji [23]. W tym paragrafie przedstawimy wyprowadzenie pochodzące z pracy [24].

Załóżmy, że ośrodek atomowy poddany jest działaniu dwóch wiązek: pompującej o amplitudzie E_{pump} i częstości ω i próbkującej o amplitudzie E_{pr} i częstości $\omega_{\text{pr}} = \omega + \delta$, przy czym wiązka próbkująca jest na tyle słaba, że wystarczy rozpatrywać procesy pierwszego rzędu w jej amplitudzie. Dla uproszczenia zakładamy, że wiązki tworzą ze sobą mały kąt θ, jak na rysunku 1.5. Wypadkowe pole świetlne wynosi

$$E(r, t) = \Re \left[E_{\text{pump}} \exp \left[i(k \cdot r - \omega t) \right] + E_{\text{pr}} \exp \left[i(k_{\text{pr}} \cdot r - \omega_{\text{pr}} t) \right] \right].$$

Rys. 1.5: (a) Geometria wiązek indukujących przejście prowadzące do rezonansów odrzutu dla małego kąta θ pomiędzy wiązkami i zaznaczony układ współrzędnych wykorzystywany w rachunkach w tym paragrafie. Przekaz pędu zachodzi wzdłuż kierunku y.

Jest to fala zmodulowana przestrzennie i czasowo. Ta modulacja światła (wzór interferencyjny) wywołuje modulację przestrzenną przesunięć światłem poziomów atomowych, poprzeznie do kierunku z rozchodzenia się wiązkek. To z kolei prowadzi do powstania periodycznego potencjału $U(r, t)$, który sprawia, że atomy mają tendencję do przestrzennego grupowania się. W takim razie modulowana jest również zależna od gęstości atomów $n(r, t)$ polaryzacja ośrodka dana wzorem

$$P(r, t) = \varepsilon_0 \alpha_0 n(r, t) E(r, t),$$

w którym α_0 oznacza liniową polaryzowalność pojedynczego atomu. Polaryzacja ośrodka jest członem źródłowym w równaniu falowym

$$\Delta E - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P}{\partial t^2}$$

i prowadzi do powstania sprzężenia pomiędzy falą świetlną wiązki pompującej i próbkującej. Zakładamy przy tym dla uproszczenia, że natężenia wiązek są na tyle słabe, że nie nasycają one przejścia atomowego i sprzężenie między nimi wynika tylko z efektów modulacji gęstości atomowej $n(r, t)$. Jest to więc efekt kolektywny, gdyż
1.3. RIR w przestrzeni położen

zależy on od własności przestrzennych całej próbki atomowej a nie od wewnętrznych stopni swobody każdego atomu z osobna. Podstawiając wyrażenie na całkowite pole (1.50) do równania falowego (1.52) otrzymujemy równanie na zależność amplitudy wiązki próbującej \(E_{pr} \) od zmiennej \(z \) [37]

\[
\frac{\partial E_{pr}}{\partial z} = \frac{i k_{pr} \alpha_0}{2} E_{pump} n(r, t) \exp[-i(k_{pr} - k) \cdot r + i\delta t].
\] (1.53)

Aby je rozwiązać, potrzebna jest znajomość gęstości przestrzennej \(n(r, t) \). Możemy ją otrzymać przez scałkowanie wyrażenia na gęstość atomów w przestrzeni fazowej \(\Pi(t, y, p_y) \) po wszystkich możliwych pędach

\[
n(r, t) = \int dp_y \Pi(t, y, p_y).
\] (1.54)

\(\Pi(t, y, p_y) \) spełnia klasyczne równanie Boltzmanna

\[
\frac{\partial \Pi}{\partial t} + \frac{p_y}{m} \frac{\partial \Pi}{\partial y} + F \frac{\partial \Pi}{\partial p_y} = -\gamma(\Pi - \Pi_0),
\] (1.55)

w którym \(\gamma \) oznacza stałą zaniku do równowagowego rozkładu \(\Pi_0 \), natomiast

\[
F = -\frac{\partial U}{\partial y}
\] (1.56)

jest siłą działającą na atom o masie \(m \), która w naszym przypadku wynika z istnienia potencjału wywołanego modulacją światła

\[
U(y, t) = U_0 + U_{pr} \exp[i(k\theta y - \delta t)] + \text{c.c.}
\] (1.57)

Głębokość tego potencjału wynosi (rozdział 5)

\[
U_{pr} = \frac{d^2 E_{pr} E_{pump}^*}{2\hbar \Delta},
\] (1.58)

gdzie \(d \) jest momentem dipolowym atomu a \(\delta - \) odstrojeniem wiązkek od przejścia atomowego. Ponieważ gęstość w przestrzeni fazowej jest słabo zaburzana przez wiązkę próbującą, wystarczy znaleźć rozwiązanie w pierwszym rzędzie zaburzeń w \(E_{pr} \). Skorzystamy z rozwinięcia

\[
\Pi(t, y, p_y) = \Pi_0(p_y) + \Pi_1(t, y, p_y),
\] (1.59)

w którym pierwszy składnik jest niezależny od współrzędnyc h przestrzennych i czasowych, a drugi wynika z proporcjonalnej do amplitudy wiązki próbującej modulacji wypadkowego pola świetlnego (1.49) i ma postać

\[
\Pi_1(p_y) \propto E_{pr} \propto U_{pr}.
\] (1.60)

Po podstawieniu wyrażenia (1.59) do równania Boltzmanna (1.55) i pozostawieniu tylko wyrazów do pierwszego rzędu w amplitudzie \(E_{pr} \) otrzymujemy

\[
\frac{\partial \Pi_1}{\partial t} + \frac{p_y}{m} \frac{\partial \Pi_1}{\partial y} + \gamma \Pi_1 = \frac{\partial U_{pr}}{\partial y} \frac{\partial \Pi_0}{\partial p_y}.
\] (1.61)
Ponieważ poszukujemy rozwiązania stacjonarnego, pochodne w powyższym równaniu mają tę samą zależność czasową, jak człon źródłowy w równaniu falowym. Jest nim polaryzacja ośrodka zmienna w czasie jak \(\exp[-i(k \cdot r - \omega t)] \). W takim razie operatorzy pochodnych we wzorze (1.61) można zastąpić odpowiednio przez \(\partial / \partial t = -i \delta \) i \(\partial / \partial y = ik \theta \). Stąd otrzymujemy rozwiązanie pierwszego rzędu na gęstość w przestrzeni fazowej

\[
\Pi_1(t, y, p_y) = U_{pr} \partial \Pi_0 \frac{i k \theta \exp [i (k \theta y - \delta t)]}{\gamma + i (k \theta p_y / m - \delta)} + c.c. \tag{1.62}
\]

Korzystając teraz z (1.54) otrzymujemy ze wzoru (1.53) rozwiązanie na amplitudę wiązki próbującej \(E_{pr}(L) \) po przejściu przez optycznie rzadki ośrodek atomowy o długości \(L \)

\[
\frac{E_{pr}(L) - E_{pr}(0)}{E_{pr}(0)} = - \frac{\alpha_0 k^2 \theta L d^2 |E_{pump}|^2}{2 \hbar \Delta} \int dp \gamma \partial \Pi_0 \frac{1}{\gamma + i (k \theta p_y / m - \delta)}. \tag{1.63}
\]

1.3.2 Interpretacja

Obecnie zajmiemy się pochodzącą z pracy [24] interpretacją równania (1.63). Pod koniec paragrafu 1.2.5 dyskutowaliśmy w przestrzeni pędów stosowalność warunku (1.42), gwarantującego dużą amplitudę sygnału RIR. W przestrzeni położen warunek ten oznacza, że atomy „widzą” wiele studni periodycznego potencjału zanim ich swobodny ruch ulegnie relaksacji zadanej przez stałą \(\gamma \). Dzięki temu efektywnie ulegają grupowaniu, co prowadzi do wydajnego ugięcia wiązki pompującej na powstałej siatce gęstości, jak to widać z równania (1.53).

Zastanówmy się teraz nad mechanizmem grupowania. Z równania (1.62) otrzymujemy warunek na rezonansową prędkość atomów, przy której zachodzi maksymalne grupowanie wzdłuż kierunku \(y \)

\[
v_{res} = \delta / k \theta. \tag{1.64}
\]

Jest to wyrażenie identyczne z wynikiem przybliżenia w granicy małych kątów wzoru (1.44) otrzymanego w przestrzeni pędów. W przestrzeni położen warunek ten oznacza, że najsielniej oddziałują ze światłem atomy o niezaburzonej prędkości \(v_{res} \) równej prędkości fazowej wzoru interferencyjnego. Jest tak dlatego, gdyż te atomy i wzór interferencyjny są względem siebie nieruchome. Jednak z tej samej przyczyny te rezonansowe atomy nie wnoszą przykroczynku do sygnału, gdyż są w fazie z wypadkowym polem światelnym. Jak wiadomo (np. [23, 38]), jedynie składowa siatki atomowej w kwadraturze ze wzorem interferencyjnym może prowadzić do wzmocnienia lub absorpcji światła. Z kolei dla atomów o prędkościach znacznie różnych od rezonansowej studnie potencjału są zbyt płytkie, by mogły one wydajnie prowadzić do grupowania się atomów i ugięcia wiązki pompującej. W takim razie sygnał generowany jest przez atomy o prędkości bliskiej, lecz nieco różnej od rezonansowej (1.64). Jeśli \(v_{at} \gg v_{res} \), to potencjał spowalnia nieco atomy, które oddają energię do pola świetlnego i gromadzą się przy jednym zboczu potencjału. W odwrotnym przypadku atomy są nieco przyspieszane kosztem energii światła i gromadzą się po przeciwnej stronie studni potencjału. Generowany sygnał jest więc wynikiem nierównowagi pomiędzy atomami o prędkościach nieco większych i nieco mniejszych od rezonansowej. W takim razie jest on proporcjonalny do pochodnej rozkładu prędkości atomów. Tym sposobem
otrzymaliśmy w przestrzeni pędów ten sam wynik, co poprzednio w przestrzeni po-
łożen. Jest to przykład na pewnego rodzaju równoważność procesów stymulowanego
rozpraszania Ramana i Rayleigha, występującą przy bardzo małej różnicy częstości
wiązek.

1.4 Podsumowanie

W niniejszym rozdziale przedstawiono teorię rezonansów odrzutu. Pokazano, że ko-
herentny przekaz pędu pomiędzy atomem a wiązkami światła prowadzi do pojawie-
nia się w widmach spektroskopii ramanowskiej wąskich struktur rezonansowych. Ich
kształt związany jest z rozkładem prędkości atomów i dlatego taki pomiar zostać
wykorzystany do badania tego rozkładu, a w szczególności do wyznaczania tempera-
tury zimnej próbki znajdującej się w równowadze termodynamicznej. W rozdziale 4
przedstawiona będzie realizacja doświadczalna takich pomiarów i szereg uzyskanych
w ten sposób wyników.
Rozdział 2

Układ doświadczalny

2.1 Wprowadzenie

W doświadczeniu opisowanym w niniejszej pracy wykorzystujemy spułapkowaną i schłodzoną do temperatur rzędu kilkudziesięciu \(\theta\) K próbkę atomów rubidu \(^{85}\text{Rb}\). Jest ona przygotowywana w klasycznym układzie pułapki magnetoptycznej [39]. Idea laserowego chłodzenia i pułapkowania atomów jest wyczerpująco omówiona w wielu pozycjach literaturowych (np. [40]-[42]). Trzy pary przeciwiecznych wiązek laserowych o wzajemnie ortogonalnych polaryzacjach kołowych przecinają się, tworząc obszar spowalniania atomów, zwany melasą optyczną [43]-[45]. Dodanie pola magnetycznego o niezerowym gradience przesuwa podpoziomy zeemannowski atomów tak, że wypadkowe ciśnienie promieniowania spycha je do środka obszaru melasy, prowadząc do pułapkowania. Pole to generowane jest przez parę cewek w układzie z przeciwnie płynącymi prądami, zwany układem anty-helmholtzowskim.

Pułapka magnetoptyczna wykorzystana w tej pracy wyewoluowała z poprzednich wersji, rozwijanych od 1998 roku [46]-[48], [20]. Najbliższy omawianemu w tej pracy układ przedstawiony jest szczegółowo w pracy [20]. Najważniejsze zmiany wprowadzone w stosunku do tego układu to inna konfiguracja przesunięć częstości laserów, zoptymalizowana do pomiarów spektroskopowych poza rezonansem atomowym, wprowadzenie nowej wiązki pompującej, wymiana komory próżniowej na szklaną z lepszym dostępem optycznym i nowe cewki generujące pole pułapkujące z układem szybkiego wyłączania. Opis układu doświadczalnego będzie koncentrował się właśnie na tych zmianach. Pozostałe informacje o układzie pułapki można znaleźć w cytowanej powyżej literaturze, w szczególności w pracy [20].

2.2 Ogólna charakterystyka układu laserów

Do chłodzenia i badania atomów \(^{85}\text{Rb}\) (schemat poziomów zamieszczono na rysunkach 2.1 i 2.2) wykorzystywane są cztery lasery diodowe, wykonane w Zakładzie Fotoniki. Są to: precyzyjnie strojony oscylator laserowy (master), dwa wzmacniające (slave) i laser repompujący. Laser master wykorzystuje diodę laserową SANYO DL7140-201 [49] o mocy 80 mW. Posiada on zewnętrzny rezonator z siatką dyfrakcyjną w układzie Littrowa i elementem piezoelektrycznym [50, 51], za pomocą którego realizowane jest przestrzajanie lasera. Laser master stabilizowany jest do atomowego wzorca częstotliwości w układzie spektroskopii nasyceniowej [52]. Wiązka tego lasera wymusza świecenie dwóch laserów (technika injection-locking, [53, 54]): lasera
Rys. 2.1: Schemat częstotliwości laserów służących do pułapkowania atomów i spektroskopii ramanowskiej z wykorzystaniem wiązkek pułapkujących. Poniżej schemat struktury nadsubtelnej linii 8Rb z zaznaczonymi częstotliwościami laserów (szare strzałki) i ich przesunięciami przez modulatury AOM (białe strzałki). Obok widmo absorpcji nasyceniowej przejścia $5^2S_{1/2}(F = 3) \leftrightarrow 5^2P_{3/2}(F')$.
Rys. 2.2: Schemat częstotliwości laserów służących do pułapkowania atomów i spektroskopii ramanowskiej z wykorzystaniem dodatkowej wiązki pompującej. Poniżej schemat struktury nadszutelnej linii D_2^{85}Rb z zaznaczonymi częstotliwościami laserów (szare strzałki) i ich przesunięciami przez modulatory AOM (białe strzałki). Obok widno absorpcji nasyciowej przejścia $5^2S_{1/2}(F = 3) \leftrightarrow 5^2P_{3/2}(F')$.
2. Układ doświadczalny

pułapkującego (SANYO DL7140-201, 80 mW) oraz lasera próbkującego (HITACHI HL7851G, 50 mW [55]). Pozostała część wiązki lasera master wykorzystana jest jako dodatkowa wiązka pompująca. Dzięki wzajemnemu sprzężeniu tych trzech laserów, wiązki pułapkujące, próbkująca i pompująca są zsynchronizowane fazowo, co umożliwia między innymi pomiary z wykorzystaniem spektroskopii ramanowskiej o zdolności rozdzielczości poniżej szerokości spektralnej linii pojedynczych laserów. Czwartym laserem koniecznym do działania pułapki magnetooptycznej jest laser „repompujący” (HITACHI HL7851G, 50 mW), przenoszący atomy z nieoddziałującego stanu $5^2S_{1/2}(F_g = 2)$ do stanu $5^2S_{1/2}(F = 3)$ poprzez pompowanie optyczne.

2.3 Częstotliwości laserów i ich przestranjanie

Częstotliwości wiązek laserowych są przesuwane i przestrażane za pomocą modulatorów akusto-optycznych (AOM, ISOMET 1205C, 80 MHz [56]) sterowanych przez generator VCO (ang. Voltage Controlled Oscillator, oscylator sterowany napięciowo.) lub przez syntetyzer radioczęstości. W niniejszej pracy wykorzystano dwa schematy przesunięć i strojenia częstotliwości. Pierwszy ze schematów (rysunek 2.1) stosowany był przy przestrajaniu wiązki próbkującej wokół częstotliwości lasera pułapkującego podczas pomiarów spektroskopowych z włączoną pułapką i następnie z wyłączo- nym polem magnetycznym, natomiast drugi (rysunek 2.2) służy pomiarom daleko poza rezonansem atomowym, kiedy to laser próbujący przestrajany jest w pobliżu częstotliwości dodatkowej wiązki pompującej.

Spektroskopia ramanowska z wiązkami pułapkującymi

Konfigurację wiązek laserowych użytych w doświadczeniu przedstawia schematycznie rysunek (2.1). Wiązki pułapkujące odstronne są od przejścia $5^2S_{1/2}(F = 3) \leftrightarrow 5^2P_{3/2}(F' = 4)$ linii $D_2 \text{ } ^{85}\text{Rb}$ typowo o $\Delta \approx -3\Gamma$ w stronę niższych częstotliwości. Jest to osiągane dwóch krokach: najpierw stabilizuje się do rezonansu krzyżowego co $(2-4)$ częstotliwość światła lasera master przesunięta podwójnie o $-f_0$ (AOM-0), a następnie wiązką lasera master o częstotliwości $2f_0 + f_{24}$ wymuszony jest laser pułapujący. Częstotliwość jego wiązki jest z kolei przesuwana o częstotliwość $-f_3$ (AOM-3), osiągając zadane odstrojenie Δ od przejścia pułapkującego. Wiązka lasera master jest też wprowadzana do lasera próbującego, ale dopiero po podwójnym przejściu przez AOM-1, gdzie doznaje przesunięcia częstotliwości $-2f_1$. Częstotliwość ta w pewnym zakresie może być zmieniana w sposób ciągły przez użycie dodatkowego generatora. Tak realizowane jest przestrajanie lasera próbującego. Ostatecznie częstotliwość wiązki próbującej jest zbliżona do częstotliwości wiązki pułapkujących przez AOM-2 pracujący na częstotliwości f_2. Odstrzenie δ wiązki próbującej od wiązek pułapkujących dane jest zatem wzorem

$$\frac{\delta}{2\pi} = f_2 + f_3 - 2f_1.$$ \hspace{1cm} (2.1)

Wadą powyższej konfiguracji, używanej głównie w pracy [20] i częściowo w niniejszej pracy, jest konieczność użycia czterech modulatorów akusto-optycznych. Do niewątpliwych jej zalet należy możliwość zmian odstrojenia Δ od rezonansu atomowego w szerokim zakresie, bez konieczności przejustowania układu. Wynika to z użycia odpowiadającego za to odstrojenie modulatora AOM-0 w podwójnym przejściu.
Rys. 2.3: Schemat układu optycznego służącego do przygotowania własności spektralnych wiązek służących do pułapkowania i spektroskopii zimnych atomów. Označenia: \(io \) - izolator optyczny, \(fd(m) \), \(fd(r) \) - detektory absorpcji nasyceniowej w układzie lasera master i repompującego, AOM - modulator optyczny, F-P - konfokalny interferometr Fabry-Perot, SG - światłowodowe wyjście diagnostyczne do spektrograflu. Szarym kolorem zaznaczono zmiany w stosunku do pracy [20]: zmiana podwójnego przejścia przez AOM-0 na pojedyncze, usunięcie dwóch modulatorów z torów wiązki pułapkującej i próbującej, uformowanie dodatkowej wiązki pompującej z części wiązki lasera master, zmiana komory próżniowej i cewek kwadrupolowych.
Spektroskopia ramanowska z dodatkową wiązką pompującą

Realizację schematu częstości wykorzystywanego w pomiarach nierezonansowych przedstawia rysunek 2.2. W odróżnieniu od poprzedniego przypadku, częstotliwość wiązki laserowej master jest stabilizowana bezpośrednio do częstotliwości rezonansu krzyżowego co(2-4) po jednokrotnym przesunięciu częstotliwości o \(-f_0 \) (AOM-0). W takiej konfiguracji częstotliwość wiązki laserowej master wymuszającej laser pułapkujący ma od razu częstotliwość właściwie dobraną do częstotliwości przejścia pułapkującego. Nie jest więc konieczne stosowanie dodatkowego modulatora w torze wiązki pułapkującej. Część wiązki laserowej master jest wprowadzana do lasera próbkującego po jej podwójnym przejściu przez płynnie przестrażany modulator AOM-1, który odpowiada po pierwsze za możliwość strojenia próbki, a po drugie odsuwa jej częstotliwość od rezonansu atomowego o \(2f_1 - |\Delta| \approx 24\Gamma \) w stronę wyższych częstotliwości. Pozostała część wiązki laserowej master jest wykorzystana do uformowania dodatkowej wiązki pompującej. Jej częstotliwość musi zostać odsunięta od rezonansu podobnie jak częstotliwość wiązki próbującej. Służy do tego podwójne przejście przez AOM-2, przesuwający częstotliwość wiązki laserowej master +2\(f_2 \). Ostatecznie, częstotliwości wiązki próbującej i dodatkowej pompującej są zbliżone, a ich odstępowanie \(\delta \) wyraża się wzorem

\[
\delta = 2(f_1 - f_2).
\]

(2.2)

Większość pomiarów prezentowanych w niniejszej pracy została przeprowadzona w omówionej powyżej konfiguracji. Jej niewątpliwą zaletą jest mniejsza liczba potrzebnych do jej realizacji modulatorów (3) i zredukowanie o 1 liczby kłopotliwych w justowaniu podwójnych przejść przez AOM. Do wad należy zaliczyć ograniczony zakres zmiany odstrojenia \(\Delta \) i konieczność dojustowania wiązki w układzie stabilizacji po każdorazowej zmianie częstotliwości \(f_0 \). Wynika z to z zastosowania modulatora AOM-0 w pojedynczym, a nie podwójnym przejściu.

2.4 Układ optyczny i próżnia

Na rysunku 2.3 przedstawiono schemat układu do spektroskopii ramanowskiej z nierezonansową wiązką pompującą. Modyfikacje wprowadzone w stosunku do pracy [20] wyróżniono szarym tłem. Warto zwrócić uwagę na fakt, że rysunek 2.3 pokazuje tylko część układu służącą do przygotowania własności spektralnych wiązek użytych do pułapkowania i próbkowania atomów. Wiązki te są następnie wprowadzone do komory próżniowej tak, jak przedstawia to rysunek 2.4 i schematy układu spektroskopii ramanowskiej w różnych konfiguracjach zamieszczone w paragrafie 4.2.3.

Atomy pułapkowane są w komorze próżniowej, która na bieżąco odpompowywana jest przez pompę jonową. Ciśnienie utrzymywane jest na poziomie poniżej \(10^{-9} \) mbar. Ze względu na niewielkie rozmiary układu próżniowego, składającego się jedynie ze szklanej komórki, przepustu łączącego ją z pompą jonową i zaworów, pompowanie jest bardzo szybkie i efektywne. Pułapka magnetooptyczna ładowana jest z par rubidu emitowanych do komory przez dyspenser [57, 58] zasilany stałym pradem o natężeniu rzędu 4 – 5 A.

Chmura spułapkowanych atomów obserwowana jest w dwóch prostopadłych płaszczyznach za pomocą dwóch kamer CCD. Pozwala to monitorować zachowanie zimnych atomów we wszystkich trzech kierunkach. W szczególności, po wyłączeniu ma-
2.5 Cewki kwadrupolowego pola magnetycznego

Jedną ze zmian w stosunku do układu doświadczalnego opisanego w pracy [20] było zastąpienie dotychczasowej, stalowej komory próżniowej z okienkami o średnicy 3.5 cm szklaną komórką (prod. Hellma, wymiary $50 \times 75 \times 100$) z lepszym dostępem optycznym, zapewniającym możliwość wprowadzenia większej ilości wiązek diagnostycznych, większą swobodę w ustalaniu ich geometrii i lepszy podgląd chmury zimnych atomów kamerami CCD. Ze względu na inną geometrię nowej komory próżniowej zaprojektowano nowe cewki generujące kwadrupolowe pole magnetyczne B o stałym gradiencie.

KaŜda z cewek o średnim promieniu $R = 6$ cm i szerokości karkasu z niemagnetycznej stali nierdzewnej 2 cm zawiera 90 zwojów drutu miedzianego o średnicy 1.5 mm. Opór układu dwóch cewek połączonych szeregowo wynosi 0.6 Ω, a indukcyjność 2.04 mH. Cewki w układzie pułapki zostały zamontowane w odległości $2A = \frac{5}{4}R$. Takie ustawienie daje mniejszy obszar jednorodności gradientu, niż optymalna pod tym względem konfiguracja z $2A = \sqrt{3}R$, ale daje za to większą wartość gradientu. Standardowo cewki zasilane są prądem o natęŜeniu $I = 5$ A. Zmierzyony przy takim natęŜeniu gradient pola B na osi cewek wyniósł $\partial_z B = 12.2$ Gauss/cm, a w kierunku radialnym w płaszczyźnie symetrii układu cewek $\partial_r B = 6.1$ Gauss/cm. Przy używanych w doświadczeniu natęŜeniach prądu zasilającego cewki (0 – 6 A) nie jest wymagane ich chłodzenie.
2.6 Układ wyłączania cewek

W wielu pomiarach, w których pole magnetyczne pułapki stanowią czynnik zaburzający, konieczne jest jego szybkie wyłączanie. Im szybszy jest zanik pola magnetycznego pułapki, tym szybciej po odcieniu zasilania cewek można rozpocząć pomiary. Jest to istotne ze względu na relatywnie szybką ucieczkę atomów z tak otwartej pułapki. Zastosowanie zwykłego, opartego jedynie o tranzystor układu wyłączającego cewki jest niewystarczające. Należy zadbac, aby prądy samoindukcji wytwarzające się w cewkach po gwałtownym odcieniu ich zasilania, były możliwie szybko i efektywnie wygaszane. Schemat układu realizującego to zadanie przedstawiono na rysunku 2.5. Jest on modyfikacją układu prezentowanego w pracy [59].

![Rys. 2.5: Schemat układu wyłączania cewek kwadrupolowego pola magnetycznego pułapki](image)

Układ zasilany jest prądem płynącym przez cewki. Dioda D1 i kondensator 0.1 μF zabezpieczają zasilacz przed efektami przepięciowymi w układzie. Tranzystor MOSFET IRF3710, o krótkich czasach przełączania, dopuszczalnym prądzie $I_D = 57$ A i temperaturze pracy 175° C, przewodzi prąd I_D tylko w przypadku wysokiego stanu sygnału TTL. Po zaniku napięcia TTL, obwód jest przerywany, a cewki dają do podtrzymania przepływu prądu. Ten prąd samoindukcji jest doprowadzony przez szybką diodę Schottky’ego MBR20200CT o napięciu zaporowym 200 V do układu RC, gdzie zachodzi dyssypacja energii zgromadzonej w cewkach. Dioda Schottky’ego zapobiega powstawaniu oscylacji w obwodzie cewek, co wydajnie przyczynia się do szybkości wyłączania pola magnetycznego. Dla tego typu diod wysoka wartość napięcia zaporowego prowadzi do szybszego wygaszania wysokich napięć samoindukcji. Wartości oporu i pojemności w układzie RC zostały eksperymentalnie dobrane do oporu omowego i indukcyjności cewek.

Aby sprawdzić, jak szybko wygasa pole B po wyłączeniu cewek, sporządzone cewkę próbną (średnica 6 cm, 13 zwojów drutu miedzianego o średnicy 1.5 mm), którą umieszczono wewnątrz cewek kwadrupolowych. Na oscyloskopie obserwowano przebieg napięcia wytworzonego w cewce w wyniku zmian strumienia magnetycznego Φ. Wykres tego napięcia w zależności od czasu przedstawia rysunek 2.6. Widać, że po czasie 1 ms od momentu wyłączenia cewek zanikają wszelkie zmiany pola magnetycznego - indukowane w cewce próbnej napięcie osiąga wartość zero. Jak pokazuje wstawka na wykresie, szybkie oscylacje prądu w cewkach są stosunkowo szybko gaszone (w czasie krótszym niż 100 μs). Jest to dowód na skuteczne działanie mechanizmu dyssypacji energii w omawianym układzie. Długoczasowe opadanie napięcia
w cewkach próbnych jest najprawdopodobniej związane z występowaniem prądów wirowych w metalowym karkasie cewek. Układ z aktywną kompensacją tych prądów został zaproponowany w pracy [59], ale w naszym przypadku czasy wyłączania cewek rzędu 1 ms są w zupełności wystarczające.

2.7 Detektor sygnału absorpcji

Sygnał absorpcji rejestrowany jest przez detektor oparty na układzie OPT101 [60]. Zmierzone wzmocnienie detektora absorpcji wynosi 0.4 V/μW. Pasmo przenoszenia detektora wynosi 14 kHz w typowych dla doświadczenia warunkach umożliwia rejestrację widm z prędkością jednego przebiegu (o szerokości spektralnej rzędu MHz) na milisekundę. Aby uwolnić się od zakłóceń (światło rozproszone i tętnienie 50 Hz), światło pada na detektor po przejściu przez filtr przepuszczający światło podczerwone, a detektor zasilany jest bateryjnie.
Rozdział 3

Spektroskopia ramanowska z wiązkami pułapkującymi

3.1 Wprowadzenie

Ten rozdział przedstawia wyniki pomiarów widm absorpcji i mieszania czterech fal przeprowadzonych we włączonej pułapce magnetooptycznej w sytuacji, gdy wiązki pułapkujące pełnią rolę wiązek pompujących w przejściach ramanowskich, a także dla podobnej sytuacji po wyłączeniu pola magnetycznego pułapki. W paragrafie 3.2 przedstawiono konfigurację eksperymentu. Paragraf 3.3 dotyczy sytuacji, gdy podczas pomiaru włączone były zarówno wiązki pułapkujące jak i kwadrupolowe pole magnetyczne. Przedstawione w tej części rozprawy widma zostały wraz z interpretacją dokładnie omówione w pracy doktorskiej Tomasza M. Brzozowskiego [20] i publikacji [21]. Znajomość tych wyników jest jednak konieczna dla zrozumienia zaproponowanej i przedstawionej w rozdziale 4 metody pomiaru temperatury i rozkładu prędkości zimnych atomów. Uzasadnia to potrzebę skróconego przypomnienia wyników, które doprowadziły do rozwoju tej metody. Zainteresowani dokładnym opisem badań mogą go znaleźć we wspomnianych powyżej pracach.

Zupełnie nowe wyniki są zaprezentowane w ostatnim paragrafie niniejszego rozdziału. Zostały one otrzymane w sytuacji, gdy atomy tak jak poprzednio oddziaływały z wiązkami pułapkującymi, ale kwadrupolowe pole magnetyczne było wyłączone. Analiza tych wyników potwierdza postawioną w poprzednich pracach hipotezę o wpływie pola magnetycznego na niejednorodne poszerzenie rejestrowanych widm.

3.2 Konfiguracja eksperymentu

Schemat eksperymentu przedstawiony jest na rysunku 3.1. Chmura zimnych atomów znajduje się we włączonej pułapce magnetooptycznej, a więc poddana jest oddziaływaniu z trzema parami przeciwbieżnych wiązek laserowych o częstości \(\omega \) oraz kwadrupolowym polem magnetycznym. Przez chmurę przechodzi ponadto słaba wiązka próbująca o częstości \(\omega_{\text{probe}} \). Wiązka ta tworzy mały kąt \(\alpha \) (zwykle od 3° do 7°) z kierunkiem \(z \), pokrywającym się z osią cewek wytwarzających pole magnetyczne. Oś \(z \) określa też kierunek rozechodzenia się jednej z par wiązek pułapkujących. W takim razie wiązka próbująca tworzy kąt \(\alpha \) z najbliższą jej wiązką.

\(^{1}\)Ten paragraf przedstawia ideę przeprowadzonych pomiarów. Natomiast wszelkie szczegóły techniczne dotyczące układu doświadczalnego zostały zawarte w rozdziale 2.
3. Spektroskopia ramanowska z wiązkami pułapkującymi

Rys. 3.1: Spektroskopia „pompa-próbka” w MOT. Wiązki pułapkujące pełnią rolę pompujących, wiązka próbująca rozchodzi się pod małym kątem α do jednej z nich. Rysunek pochodzi z pracy [20].

pułapkującą o polaryzacji σ^- i kąt $180^\circ - \alpha$ z wiązką do niej przeciwbieżną o polaryzacji σ^+. Podczas pomiaru rejestrowane jest widmo absorpcji wiązki próbującej, to znaczy zależność natężenia tej wiązki w funkcji jej odstojenia $\delta = \omega_{\text{probe}} - \omega$ od częstości wiązek pułapkujących ω. Jednocześnie rejestrowany jest sygnał mieszania czterech fal (ang. Four-Wave Mixing, FMW) [38]. Fotony biorące udział w wytwarzaniu badanego sygnału pochodzą od wszystkich par przeciwbieżnych wiązek pułapkujących i wiązki próbującej. W takiej geometrii powstająca czwarta fala rozchodzi się w kierunku przeciwnym do kierunku wiązki próbującej [20, 19]. Zrozumienie widm absorpcji i mieszania czterech fal uzyskanych we włączonej pułapce magnetooptycznej było głównym celem pracy [20], z której pochodzą przypominane poniżej wyniki doświadczalne i ich interpretacja.

3.3 Widma absorpcji we włączonej pułapce

Na rysunku 3.2 przedstawione są przykładowe widma absorpcji spolaryzowanej kołową wiązki próbującej uzyskane we włączonej pułapce. Widma te wykazują złożoną strukturę oraz siłą zależność od natężenia wiązek pułapkujących i polaryzacji wiązki próbującej. Na ich kształt mają wpływ następujące procesy:

- przejścia ramanowskie pomiędzy przesuniętymi światłem wiązek pułapkujących poziomami zeemanowskimi stanu podstawowego
- modulacja polaryzacji i natężenia światła w pułapce
- kwadrupolowe pole magnetyczne pułapki
- rezonanse odrzutu

Poniżej skrótnie omówimy kolejno każdy z tych przyczynków i jego wpływ na widmo.
Widma absorpcji we włączonej pułapce

Rys. 3.2: Przykładowe widma absorpcji pochodzące z pracy [20] zarejestrowane przy różnych natężeniach wiązek pułapkujących i polaryzacji wiązki próbkującej σ^+ i σ^-. Natężenie I pojedynczej wiązki jest podane obok każdego wykresu. Odstrojenie wiązek pułapkujących od rezonansu atomowego $\Delta = -3 \Gamma$, podłużny gradient pola magnetycznego $\partial_z B = 13$ Gauss/cm. Na ostatnim wykresie zaznaczono centralną, ultra-wąską strukturę.

3.3.1 Przejścia ramanowsko-zeemanowskie

Rozważmy atom 85Rb poddany oddziaływaniu z silnym światłem wiązek pułapkujących. W wyniku interferencji światła w pułapce dochodzi do modulacji natężenia i polaryzacji wypadkowego pola świetlnego. Na potrzeby naszych rozważań wybieramy taką bazę, w której oś kwantyzacji układu jest skierowana wzdłuż kierunku wypadkowego pola. W tak wybranym układzie odniesieniowym światło wiązek pułapkujących ma polaryzację π. W wyniku oddziaływania pomiędzy polem świetlnym a atomami dochodzi do przesunięcia atomowych podpoziomów zeemanowskich stanu podstawowego i wzbudzonego. To przesunięcie jest proporcjonalne do kwadratu współczynnika Clebscha-Gordana dla danego przejścia i dlatego jest różne dla różnych podpoziomów. Na rysunku 3.3 pokazano schematycznie przesunięte w omawiany sposób podpoziomy zeemanowskie stanu dolnego.2 Pomijanie optyczne

2Przy stosowanych w eksperymencie natężeniach wiązek pułapkujących tylko niewielka część populacji atomowej znajduje się w podpoziomach stanu górnego $F_e = 4$ [20], dlatego ten wzbudzony stan możemy pominąć w naszych rozważaniach.
3. Spektroskopia ramanowska z wiązkami pułapkującymi

Rys. 3.3: Podpoziomy zeemanowskie poziomu $|F_g = 3⟩$ linii D_2 atomu ^{85}Rb zaburzone silnym światłem o polaryzacji π (grube szare strzałki) i próbkwane słabym światłem o polaryzacji σ^+ (cienkie czarne strzałki). Rozmiar kółek symbolizuje obsadzenie podpoziomów. Rysunek pochodzi z pracy [20].

prowadzi do ustalenia równowagowego obsadzenia tych podpoziomów w taki sposób, że rozkład populacji jest symetryczny względem najbardziej obsadzonego podpoziomu $m_g = 0$. Na rysunku 3.3 populacje poszczególnych podpoziomów zostały symbolicznie zaznaczone przez kółka o rozmiarach proporcjonalnych do populacji danego stanu. Rezonanse ramanowskie mają niezerową amplitudę, gdy niezerowa jest różnica populacji początkowego i końcowego poziomu. W dalszej części tej pracy będziemy skrótnie określać rezonanse odpowiadające przejściom ramanowskim pomiędzy przesuniętymi światłem podpoziomów zeemanowskich i stanu dolnego nazwą „ramanowsko-zeemanowskie” albo w skrócie RZR (ang. Raman-Zeeman Resonances).

Rozważmy przykładowo wiązkę próbkwującą o polaryzacji σ^+, tak jak na rysunku 3.3. Fotony tej wiązki wspólnie z fotonami wypadkowego pola pułapkującego o polaryzacji π indukują przejście ramanowskie ze zmianą magnetycznej liczby kwantowej $\Delta m = \pm 1$. To przejście jest rezonansowe wtedy, gdy odstępowanie δ odpowiada różnicy energii dwóch sąsiednich ze sobą, przesuniętych światłem podpoziomów zeemanowskich. Ze względu na obsadzenie tych stanów (rysunek 3.3), wiązka próbkwująca jest wzmacniana dla odstępowan ujemnych ($\delta < 0$) i osłabiana dla odstępowan dodatnich ($\delta > 0$). W eksperymentie rejestruje się strukturę, która jest złożeniem rezonansów dla kolejnych odstępowan dających przejścia ramanowsko - zeemanowskie. W warunkach panujących w naszej pułapce magnetooptycznej te rezonansowe odstępowania są rzędu $0.1 - 1$ MHz. Na wykresach z rysunku 3.2 wyróżnić można jeden rezonan odpowiadający wzmacnieniu wiązki próbkwującej i dwa rezonanse odpowiadające jej osłabieniu.

Weryfikacja pochodzenia omawianych rezonansów wykorzystuje fakt, że przesunięcia światłem zależą również od częstości Rabiego. Istotnie, dla rosnących natężen wiązek pułapki poszczególnie rezonanse mają coraz większe częstości. Dzięki temu składowe odpowiadające przejściom pomiędzy podpoziomami w kolejnych parach są coraz lepiej rozdzielone, tak jak to widać na rysunku 3.2. Systematykę tej zależności zawiera praca [20]. Potwierdza ona hipotezę o roli rezonansów ramanowsko-
3.3. Widma absorpcji we włączonej pułapce

zeemanowskich w interpretacji struktury centralnej widm absorpcji rejestrowanych w pułapce.

Kształt każdego z rezonansów ramanowsko-zeemanowskich opisywany jest krzywą Lorentza

\[L(\delta, \delta_{\text{res}}, \gamma) = \frac{\gamma}{\gamma^2 + (\delta - \delta_{\text{res}})^2} \].

(3.1)

Szerokość \(2\gamma\) tych rezonansów przyjmujemy wstępnie jako zadaną przez domieszkę stanu wzbudzonego do podstawowego, wynikającą z faktu ubierania poziomów atomowych światłem. Rysunek 3.4 pokazuje wynik złożenia elementarnych rezonansów ramanowsko-zeemanowskich i przykładowe widmo absorpcji wiązki o polaryzacji \(\sigma^-\) zarejestrowane doświadczalnie. Zgodność krzywej uzyskanej teoretycznie ze zmierzoną w eksperymencie jest niezadowalająca. Najwyraźniejszym elementem tej niezgodności są nieprawidłowo odtworzone w modelowaniu szerokości rejestrowanych w eksperymencie rezonansów. Sugeruje to, że w doświadczeniu istnieje jakiś mechanizm poszerzający obserwowane rezonanse ramanowskie w stosunku do przyjętej powyżej szerokości \(2\gamma\).

Rys. 3.4: (a) Przesunięte światłem podpoziomy zeemanowskie stanu podstawowego \(|F_g = 3\rangle\) z rysunku 3.3, (b) przykładowe widmo doświadczalne (szara krzywa) absorpcji wiązki próbującej o polaryzacji kołowej \(\sigma^-\), otrzymane dla natężenia wiązki pułapki \(I = 102 \mu W/mm^2\) i odstrojenia \(\Delta = -3 \Gamma\) oraz wynik modelowania tego widma (czarna krzywa) poprzez złożenie lorentzowskich rezonansów ramanowsko-zeemanowskich odpowiadającym kolejnym, zaznaczonym parom podpoziomów. Szerokość \(2\gamma\) każdego rezonanu wynosi \(0.13 \Gamma\). Rysunek pochodzi z pracy [20].

Ramanowsko-zeemanowskich i przykładowe widmo absorpcji wiązki o polaryzacji \(\sigma^-\) zarejestrowane doświadczalnie. Zgodność krzywej uzyskanej teoretycznie ze zmierzoną w eksperymencie jest niezadowalająca. Najwyraźniejszym elementem tej niezgodności są nieprawidłowo odtworzone w modelowaniu szerokości rejestrowanych w eksperymencie rezonansów. Sugeruje to, że w doświadczeniu istnieje jakiś mechanizm poszerzający obserwowane rezonanse ramanowskie w stosunku do przyjętej powyżej szerokości \(2\gamma\).

Jednym z elementów wpływających na poszerzenie rezonansów ramanowsko-zeemanowskich w stosunku do wyników uzyskanych w poprzednim paragrafie jest modulacja natężenia światła w pułapce. Znajdujące się w różnych miejscach pułapki
atomy oddziałują ze światłem o różnym natężeniu. To znaczy, że inna jest częstotliwość Rabiego dla różnych atomów, a więc ich podpoziomy zeemanowskie zostają różnie przesunięte. Dodatkowo, ze względu na nieuniknioną niestabilność mechaniczną elementów optycznych układu pułapki, wytworzony wzór interferencyjny ulega zmianom w przestrzeni i w czasie. Wiązka próbująca bada atomy oddziałujące z takim wypadkowym polem świetlnym pułapki. Prowadzi to do jednorodnego poszerzenia rezonansów modelujących poszczególne przejścia ramanowskie. Poszerzenie to jest wynikiem wyśredniania po pewnym, doświadczalnie wyznaczonym zakresie częstotliwości Rabiego [20]. Rysunek 3.5 pokazuje porównanie widm absorpcji wiązki próbkującej zmierzonych w eksperymencie (w części (b) ta sama krzywa, co na rysunku 3.4) z krzywą teoretyczną uwzględniającą poszerzenie rezonansów zeemanowskich przez modulację światła w pułapce. Osiągnięto lepszą zgodność niż poprzednio, ale nadal widać rozbieżność w kształcie zmierzonych rezonansów i wyników modelowania.

Kolejny mechanizm powodujący poszerzenie rejestrowanych w eksperymencie widm jest związany z niejednorodnością pola magnetycznego pułapki. Znajdująca się w minimum tego kwadrupolowego pola chmura zimnych atomów jest przestrzennie rozciągła. Jej środek znajduje się w punkcie z_0, dla którego $B(z_0) = 0$, ale pozostałe punkty znajdują się w obszarze niezerowego pola magnetycznego. W wyniku efektu Zeemana pole B przesuwa podpoziomy zeemanowskie. Przykładowo, przy typowym rozmiarze chmury $\sigma_z = 0.9$ mm i gradiencie pola magnetycznego w kierunku osiowym $\partial_z B = 13$ Gauss/cm, to przesunięcie dla atomów znajdujących się w odległości 1 mm od środka chmury wynosi około 2 MHz [20]. To z kolei prowadzi do niejednorodnego poszerzenia rezonansów modelujących poszczególne przejścia ramanowskie. W naszym przypadku doświadczalnym dobrze spełniony jest warunek, że szerokość pojedynczego rezonansu wynikająca z jego poszerzenia przez pole magnetyczne jest znacząco większa od szerokości krzywej lorentzowskiej poszerzonej w sposób omówiony w poprzednim paragrafie. Pozwala to zastąpić krzywe lorentzowskie modelujące rezonanse przez krzywe gaussowskie o szerokości wynikającej

![Rys. 3.5: Widma eksperymentalne absorpcji wiązki próbującej o polarizacji σ^+ i σ^- (szare krzywe) uzyskane w warunkach opisanych pod rysunkiem 3.4 i wynik modelowania tych widm (czarne krzywe) przez złożenie kolejnych składowych RZR usrednionych po częstotliwościach Rabiego $\Omega \in [4.8 \Gamma; 7.8 \Gamma]$. Wyniki pochodzą z pracy [20].](image)
3.3. Widma absorpcji we włączonej pułapce

z wartości gradientu pola magnetycznego pułapki i rozmiarów przestrzennych, bez konieczności uciekania się do splotu krzywej Gaussa i Lorentza. Porównanie widm zmierzonych w doświadczeniu wynikami obliczeń uwzględniających oprócz modulacji światła również kwadrupolowe pole magnetyczne pułapki pokazuje rysunek 3.6.

Rys. 3.6: Widma eksperymentalne absorpcji wiązki próbkującej o polaryzacji σ^+ i σ^- (szare krzywe) uzyskane w warunkach opisanych pod rysunkiem 3.4 w polu magnetycznym o gradiencie podłużnym $\frac{\partial B}{\partial z} = 13 \text{ Gauss/cm}$ i wynik modelowania tych widm (czarne krzywe) przez złożenie kolejnych składowych RZR uśrednionych po częstościach Rabiego $\Omega \in [5 \Gamma; 7.5 \Gamma]$ i niejednorodnie poszerzonych przez oddziaływanie z polem magnetycznym pułapki. Szerokość gaussowska pojedynczego rezonansu $\sigma_B = 0.088 \Gamma$, co odpowiada rozmiarowi pułapki $\sigma_z = 0.9 \text{ mm}$. Wyniki pochodzą z pracy [20].

3.3.2 Rezonanse odrzutu

Po krokach opisanych w poprzednim paragrafie uzyskano dość dobrą zgodność pomiędzy widmem zmierzonym w doświadczeniu i wymodelowanym w obszarze skrajnych wartości δ. Nadal jednak nie jest dobrze odtworzona centralna część widma. Ponadto, dotychczasowe rozważania nie wyjaśniają różnic pomiędzy widmami rejestrowanymi dla ortogonalnych polaryzacji kołowych wiązki próbkującej. W szczególności nie tłumaczą one występowania w widmach absorpcji wiązki próbkującej σ^- wąskiej struktury w okolicy $\delta = 0$, zaznaczonej elipsą na widmie z rysunku 3.2.

Brakującym elementem są omówione w rozdziale 1 rezonanse odrzutu. W omawianej sytuacji w ich powstawaniu rolę wiązek pompujących pełnią wiązki pułapkujące. Ponieważ rezonanse odrzutu są wynikiem przejści ramanowskich pomiędzy stanami pędowymi atomu w tym samym stanie elektronowym, są one indukowane przez fotony, które tego stanu nie zmieniają. To oznacza, że wiązka próbująca generuje sygnały odrzutu z udziałem fotonów wiązek pułapkujących o tej samej polaryzacji. W przypadku polaryzacji σ^+ fotony pochodzą z wiązki pułapkującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów w wiązki szukającej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbującej przeciwbieżnej do próbującej. Z kolei wiązka próbująca spolaryzowana σ^- indukuje przejścia ramanowskie z udziałem fotonów z wiązki pułapkującej współbieżnej z nią. Dodatkowo, wiązki poprzeczne do kierunku rozchodzenia się wiązki próbą
Spektroskopia ramanowska z wiązkami pułapkującymi

σ⁻ w bazie z osią kwantyzacji skierowanej wzdłuż osi z. Dlatego przyczynek do rezonansów odrzutu pochodzący od wiązek poprzecznych jest jednakowy dla obu polaryzacji kołowych wiązki próbkującej. Powyższe rozumowanie wyjaśnia występowanie wąskiej struktury w centrum widm zarejestrowanych dla polaryzacji σ⁻ (rysunek 3.2). Jest to rezonans odrzutu rejestrowany dla małego kąta α pomiędzy wiązkami. Dla polaryzacji σ⁺ analogiczny, ale szerszy przyczynek pochodzi od wiązek prawie przeciwnej, tworzących kąt 180° – α.

Ponieważ rezonanse odrzutu zachodzą pomiędzy stanami pędowymi atomu bez zmiany jego stanu elektronowego, nie podlegają one poszerzeniu ani przez modulację natężenia pola świetlnego w pułapce, ani przez kwadrupole pole magnetyczne.

Bardzo dobrą zgodność wyników modelowania uwzględniającego oprócz przyczynów omówionych w poprzednich paragrafach również rezonansów odrzutu z widmami pochodzącymi z doświadczenia pokazuje rysunek 3.7.

Rys. 3.8: Wybrane widma absorpcji pochodzące z pracy [20] zarejestrowane dla nierównowagowego podziału natężeń wiązek pułapkujących dla wiązki próbującej o polaryzacji σ^+ i σ^-. Całkowite natężenie wiązek pułapki jest stałe i wynosi średnio 120 μW/mm2 na wiązkę. Natężenie I_z w wiązkach rozchodzących się wzdłuż kierunku z jest podane obok każdego wykresu. Natężenia I_x i I_y są sobie zawsze równe. Odstronienie wiązek pułapkujących od rezonansu atomowego $\Delta = -3 \Gamma$, gradient osiowy pola magnetycznego $\partial_z B = 13$ Gauss/cm.
3.4 Widma z wyłączonym polem magnetycznym

3.4.1 Wprowadzenie

Zgodnie z przewidywaniami teoretycznymi z pracy [20], pole magnetyczne o niez埃尔owym gradiencie prowadzi do niejednorodnego poszerzenia widm absorpcji i mieszania czterech fal ze względu na przestrzenną rozciągłość chmury. W takim razie widma te, zarejestrowane po wyłączeniu magnetycznego pola pułapkującego, powinny charakteryzować się mniejszą szerokością, a więc także lepszym rozdzieleniem poszczególnych rezonansów RZR. W celu bezpośredniego sprawdzenia wpływu niejednorodnego pola B na badane widma, w ramach niniejszej pracy przeprowadzono serię pomiarów przy włączonym i wyłączonym polu magnetycznym pułapki. Uzyskane wyniki w pełni potwierdzają hipotezę o nieznanym wpływem tęgo tego pola na rejestrowane widma, zarówno absorpcji jak i mieszania czterech fal.

3.4.2 Opis pomiaru

Pomiar widm absorpcji i mieszania czterech fal przy wyłączonym kwadrupolowym polu magnetycznym przebiegał następująco. Prąd zasilający cewki pola magnetycznego wyłączany był przy pomocy sterowanego napięciowo tranzystora. Opisany w rozdziale 2 układ z tranzystorem był tak zaprojektowany, by zapewnić jak najszybsze wygaszenie oscylacji natężenia prądu w cewkach (a więc i pola magnetycznego w obszarze pułapki), powstających w wyniku samoindukcji po odcieniu zasilania. Opoźnienie pomiędzy wyłączeniem zasilania cewek a rozpoczęciem pomiaru musiało być wystarczające długie, aby mierzone widma były wolne od niekontrolowanych efektów przejściowych związanych z oscylacjami w obwodach RLC. Z drugiej strony czas ten musiał być na tyle krótki, aby z ekspandujących po uwalnieniu z pułapki atomów w obszarze próbkowania pozostała ich dostateczna liczba. Prezentowane w następnym paragrafie wyniki uzyskane zostały dla optymalnego opóźnienia wynoszącego 1 ms. Wartość ta została ustalona na podstawie analizy wykresów napięcia na cewkach zamieszczonych w rozdziale 2 i testowych pomiarów absorpcji przeprowadzonych dla różnych opóźnień. Sekwencja wyłączania cewek i akwizycji danych realizowana była przy pomocy karty laboratoryjnej sterowanej komputerowo [61]. Na wyjściach analogowych karty generowane były przebiegi czasowe w standardzie TTL. Sygnały te były podawane do układu wyłączającego cewki oraz, z odpowiednim opóźnieniami, wywalały oscyloskop i generator liniowo przestrajający laser próbkujący (jak opisano w rozdziale 2). Podczas pomiaru odstronienie δ zwiększane było z szybkością 920 kHz/ms, co oznacza, że czas trwania rejestracji pojedynczego widma wynosił 10 ms. Taka szybkość zapewnia, że podczas pomiaru pomimo ekspansji atomów nie zmienia się znacząco ich liczba w próbkowanym obszarze. Jednocześnie występujące w widmach wąskie struktury o szerokościach rzędu kilkudziesięciu kHz nie zostają zniekształcone w wyniku całkowania przez detektor, co zostało sprawdzone przez porównanie widm mierzonych przy różnych szybkościach skanu. Po każdym pomiarze pole magnetyczne było włączane na 3 sekundy i chmura atomów była ponownie ładowana. Wynikiem pomiaru jest widmo uśrednione po 50 przebiegach. Na rysunku 3.9 przedstawiono sekwencję pomiarową, która zastosowana była przy rejestracji widm z wyłączonym polem magnetycznym zamieszczenych w następnym pole magnetycznym.

3. Aby uwalnić się od ewentualnego wpływu ucieczki atomów z obszaru próbkowania te pomiary zostały przeprowadzone przy włączonym polu magnetycznym.
3.4. Widma z wyłączonym polem magnetycznym

paragrafie. Aby uwolnić się od błędów systematycznych, serie 50 uśrednionych widm dla danego natężenia wiązki pułapkujących mierzone były na przemian przy włączonym i wyłączonym polu magnetycznym pułapki.

Rys. 3.9: Sekwencja sterowania pomiarem przy wyłączanym kwadrupolowym polu magnetycznym pułapki. Sygnał TTL 1 wyzwała generator przestrajający laser pokazanym przebiegiem RAMP A. Skorelowany z nim sygnał TTL 2 odcina zasilanie cewek i wyzwała oscyloskop. Pole magnetyczne zanika w czasie w sposób pokazany schematycznie w ostatniej linii. Po zakończeniu pomiaru i włączeniu pola B następuje niepokazane na rysunku ładowanie chmury trwające 3 s. Rysunek nie zachowuje skali czasowej.

3.4.3 Wyniki i ich interpretacja

W tym paragrafie prezentujemy nowe widma absorpcji i mieszania czterech fal zmierzone doświadczalnie przy włączonym i wyłączonym polu magnetycznym pułapki. Na rysunkach 3.10 i 3.11 przedstawione są widma absorpcji wiązki próbkującej o polaryzacji σ^+ i σ^- zarejestrowane dla rosnącego natężenia I wiązek pułapkujących i przy włączonym i wyłączonym polu magnetycznym pułapki. Podobnie jak w przypadku wyników pochodzących z pracy [20] (paragraf 3.3) ze wzrostem natężenia I rezonanse w widmach zaczynają być lepiej rozdzielone. Kolejnym faktem potwierdzającym, że te rezonanse związane są z przejściami ramanowsko-zeemanowskimi jest to, że te same struktury zarejestrowane przy wyłączonym polu B są o wiele węższe, lepiej rozdzielone i różnią się kształtem. Dla łatwiejszej wizualizacji tych różnic na rysunku 3.14 przedstawiono nałożone na siebie widma uzyskane dla włączonego i wyłączonego pola magnetycznego, dla obu polaryzacji wiązki próbkującej.

Należy pamiętać o tym, że wyłączając pole magnetyczne eliminujemy tylko jeden mechanizm poszerzający rezonanse. Atomy wciąż poddane są oddziaływaniu ze zmodułowanym polaryzacyjnie i natężeniowo pułapkującym polem świetlnym. Dlatego nadal mamy do czynienia z bogatą strukturą rejestrowanych krzywych, która w nieobecności pola B jest lepiej widoczna, choć wciąż nie rozdzielona. Rezonans odrzutu jako wynik przejść w kontinuum pędowym nie jest czuły na wpływ pola
Rys. 3.10: Widma absorpcji wiązki próbującej o polaryzacji σ^+ zarejestrowane przy różnych natężeniach wiązek pułapkujących I przy włączonym ($\text{grad} \mathbf{B} \neq 0$) i wyłączonym ($\text{grad} \mathbf{B} = 0$) polu magnetycznym pułapki. Natężenie I przypadające na jedną wiązkę podane jest obok kolejnych wykresów. Odstrojenie wiązek pułapkujących od rezonansu atomowego $\Delta = -3.12 \Gamma$, gradient osiowy pola magnetycznego $\partial_z B = 12.2$ Gauss/cm.
Rys. 3.11: Widma absorpcji wiązki próbującej o polaryzacji σ^- zarejestrowane w warunkach doświadczalnych podanych w podpisie do rysunku 3.10.
Rys. 3.12: Widma mieszania czterech fal dla wiązki próbującej o polaryzacji σ^+ zarejestrowane w warunkach doświadczalnych podanych w podpisie do rysunku 3.10.
3.4. Widma z wyłączonym polem magnetycznym

Rys. 3.13: Widma mieszania czterech fal dla wiązki próbującej o polaryzacji σ^{-} zarejestrowane w warunkach doświadczalnych podanych w podpisie do rysunku 3.10.
magnetycznego. Rzeczywiście, krzywe z rysunku 3.14 dla włączonego i wyłączonego pola B prawie nie różnią się kształtem są w okolicy $\delta \approx 0$, gdzie główny przyczynek stanowią rezonanse odrzutu.

Rys. 3.14: Widma absorpcji wiązki próbkującej o polaryzacji kołowej σ^+ i σ^- zarejestrowane przy włączonym (szara krzywa) i wyłączenym (czarna krzywa) kwadrupolowym polu magnetycznym pułapki. Natężenie wiązek pułapkujących $I = 204 \mu$W/mm2, ich odstronienie od resonansu atomowego $\Delta = -3.12 \Gamma$, gradient osiowy pola magnetycznego $\partial_z B = 12.2$ Gauss/cm.

Na rysunkach 3.12 i 3.13 przedstawione są widma mieszania czterech fal, uzyskane dla obu polaryzacji kołowych wiązki próbkującej, dla włączonego i wyłączonego pola magnetycznego. Redukcja poszerzenia związana z wyeliminowaniem gradientu pola magnetycznego nie jest tak wyraźna jak w przypadku widm absorpcji.

Proces mieszania czterech fal (FWM) różni się zasadniczo od procesu absorpcji. Praca teoretyczna Guo et al. [26] przedstawia obliczenie sygnału mieszania czterech fal z uwzględnieniem odrzutu atomowego dla układu dwupoziomowego, nie uwzględnia więc przyczynków pochodzących od przejść ramanowo-zeemanowskich w skomplikowanym przypadku przejścia $F_g = 3 \rightarrow F_e = 4$. Ważną ogólną charakterYSTyką sygnału FWM jest jego proporcjonalność do $|\rho_{eg}(p, p')|^2$, gdzie $\rho_{eg}(p, p')$ jest pozadiagonalnym elementem macierzy gęstości zależnej od stanów pędowych. Ten element jest sumą przyczynków związanych z rezonansami RZR i RIR, co można zapisać

$$\rho_{eg}(p, p') = \rho_{eg}(p, p')_{\text{RZR}} + \rho_{eg}(p, p')_{\text{RIR}}. \tag{3.2}$$

W takim razie istotna jest zależność sygnału mieszania czterech fal od członów interferencyjnych postaci

$$\rho_{eg}(p, p')_{\text{RZR}} \cdot \rho_{eg}(p, p')_{\text{RIR}}. \tag{3.3}$$

Człon ten, wspólnie z przyczynkami pochodzącymi wyłącznie od rezonansów odrzutu, decyduje o kształcie widma mieszania czterech fal w okolicy $\delta \approx 0$ (rezonansowe częstości odrzutu są rzędu $\omega_{\text{RIR}} \leq 2p \perp k/m$). Niezależny od polaryzacji przyczynek związany z rezonansami ramanowsko-zeemanowskimi kształtuję widma w całym obszarze (paragraf 3.3.1). Powyższa analiza [21] wyjaśnia wyraźną różnicę pomiędzy widmami mieszania czterech fal dla wiązki próbkującej o różnych polaryzacjach kołowych. Widma obu typów mają szeroki piedestał o podobnym charakterze, pochodzący od RZR, lecz w o wiele większym stopniu niż widma absorpcji różnią się...
3.5 Podsumowanie

Na początku tego rozdziału przypomniane zostały widma absorpcji pochodzące z pracy [20] zmierzone dla atomów znajdujących się we włączonej pułapce magneto-optycznej oraz interpretacja ich złożonej struktury. Struktura ta jest wynikiem superpozycji rezonansów wynikających z przejść ramanowsko-zeemanowskich zachodzących pomiędzy przesuniętymi światłem pułapki podpoziomami stanu dolnego oraz tzw. rezonansów odrzutu, omówionych w sposób teoretyczny w rozdziale 1. Rezonanse RZR mierzone w pułapce ulegają poszerzeniu jednorodnemu związanemu z interferencją światła wiązek pułapkujących i poszerzeniu niejednorodnemu związanemu z faktem, że pole magnetyczne pułapki ma niezerowy gradient a chmura atomów jest przestrzennie rozciągła. W dalszej części rozdziału przypomnieliśmy doświadczalną weryfikację hipotezy o dużej roli rezonansów odrzutu w mierzonych widmach, którą stanowią opisane w pracy [20] widma absorpcji zarejestrowane dla nierównowagowego podziału natężeń wiązek pułapkujących. W końcu zaprezentowaliśmy nowe pomiary, przeprowadzone w sytuacji, gdy zimne atomy podlegają oddziaływaniu z wypadkowym polem świetlnym pułapki, pochodzącym od interferencji wiązek pułapkujących, ale kwadrupolowe pole magnetyczne jest wyłączone. Porównanie widm absorpcji zmierzonych przy włączonym i wyłączonym polu kwadrupolowym pułapki potwierdza w pełni hipotezę o niezaniedbywalnym wpływie niejednorodnego pola magnetycznego na poszerzenie rezonansów związanych z przejściami ramanowsko-zeemanowskimi. Widma mieszania czterech fal zarejestrowane w

Rys. 3.15: Widma mieszania czterech fal dla wiązki próbkijącej o polaryzacji kołowej σ^+ i σ^- zarejestrowane przy włączonym (szara krzywa) i wyłączonym (czarna krzywa) kwadrupolowym polu magnetycznym pułapki. Warunki doświadczalne podane w podpisie do rysunku 3.14.
obu sytuacjach nie różnią się znacząco, co jest dowodem dominującej roli rezonansów odrzutu, nieczułych na niejednorodność stacjonarnego pola magnetycznego.

Występowanie w zarejestrowanych we włączonej pułapce widmach absorpcji rezonansów odrzutu sugeruje ich wykorzystanie jako metody pomiaru temperatury spułapkowanych atomów i wyznaczenia ich rozkładu prędkości. Kierunkowość procesu przekazu pędu daje dodatkowo możliwość zbadania ewentualnej anizotropii tego rozkładu w przypadku braku równowagi termodynamicznej. Poważną trudnością w takim zastosowaniu jest jednak nakładanie się wielu rezonansowych przyczynków dla $\delta \approx 0$. W następnym rozdziale przedstawimy kolejne etapy pokonywania tych trudności i opracowania wspomnianej metody diagnostyki zimnych atomów poprzez badania spektroskopowe i zaprezentujemy szereg uzyskanych przy jej pomocy wyników.
Rozdział 4

Rezonanse odrzutu wolne od tła

4.1 Wprowadzenie

W poprzednim rozdziale prezentowaliśmy widma absorpcji (i mieszania czterech fal) zmierzone we włączonej pułapce magnetooptycznej. Pokazaliśmy, że w takich widmach, rejestrowanych dla częstości wiązki próbującej w przybliżeniu równej częstości wiązek pułapujących, występują głównie dwie składowe. Związane są one z rezonansami odrzutu i z przejściami ramanowsko-zeemanowskimi. Pomimo, że podstawowy mechanizm powstawania tego drugiego przyczynki jest prosty, należy uwzględnić dodatkową jego modyfikację, związaną z faktem, że sześć wiązek światła pułapującego wytwarza w obszarze chmury zimnych atomów skomplikowany wzór interferencyjny. Przedstawione w rozdziale 3 proste modelowanie sygnału absorpcji [20] i pomiary przeprowadzone w sytuacji nierównowagowego podziału natężeń wiązek pułapujących oraz wykonane w ramach tej pracy nowe pomiary przy wyłączonym polu magnetycznym pułapki pozwoliły w sposób jednoznaczny przypisać rejestrowany w widmie absorpcji strukturom konkretne procesy fizyczne. Osiągnięto przy tym zadowalającą zgodność pomiędzy krzywymi teoretycznymi a uzyskanymi w doświadczeniu. Takie proste modelowanie okazało się jednak niedostateczne, jeśli chcemy wydobyć ze złożonego wypadkowego sygnału absorpcji składową związaną z odrzutem atomowym niezaburzoną złożonym tłem RZR. Jej znajomość pozwoliłaby na pomiar temperatury zimnych atomów znajdujących się w pułapce magnetooptycznej metodą omówioną w rozdziale 1.

Widma prezentowane na rysunku 3.8 w poprzednim rozdziale, uzyskane w przypadku dużej nierównowagi natężeń pomiędzy wiązkami pułapującymi rochodzący się wzdłuż osi (kierunek propagacji wiązki próbującej) a pozostałymi, zostały w pracy [20] wykorzystane do orientacyjnego wyznaczenia szerokości rozkładu prędkości atomów wzdłuż kierunku domieszczenia, a uzyskana wartość była zgodna z wynikiem uzyskanym tradycyjną metodą czasu przelotu (ang. Time of Flight, w skrócie TOF), opisaną w pracach [44, 62] i dla małych odległości pomiędzy wiązką próbującą a chmurą atomów w [63]. Metoda TOF jest jednak tzw. metodą niszczącą – po każdym pomiarze konieczne jest ponowne ładowanie pułapki. Z kolei metoda RIR w swej podstawowej wersji ma tę wadę, że w widnie absorpcji występuje dodatkowo bardzo silne tło RZR. Systematyczne, nieniszczące pomiary termometryczne wymagają więc sygnałów RIR niezaburzonych tłem, gdyż tylko to gwarantuje dokładne wyznaczenie ich szerokości, z której prawie bezpośrednio wyznacza się temperaturę. Problem eliminacji tła jest jeszcze bardziej istotny, jeśli chcemy badać subtelne efekty związane z ewentualną anizotropią rozkładu prędkości
w zimnej próbce czy też wreszcie z odstępstwem rzeczywistego rozkładu od rozkładu Maxwella-Boltzmanna.

Ponieważ dokładne modelowanie rezonansów ramanowsko-zeemanowskich jest bardzo skomplikowane, konieczne jest ich wyeliminowanie już na etapie pomiaru. Poniżej zostaną zaprezentowane kolejne propozycje realizacji takich doświadczeń. Paragraf 4.1.1 przedstawia zalety i wady pomiaru absorpcji wiązki spolaryzowanej liniowo. W paragrafie 4.1.2 opisujemy metodę eliminacji tła RZR przez użycie pola radiowego, które w pewnych warunkach może wyrównać populacje podpoziomów zeemanowskich i w ten sposób wyeliminować tło RZR. W kolejnym paragrafie pokazujemy, że pozorne podobna metoda, w której pole radiowe zastąpione jest przez modulację częstotliwości światła pułapkującego nie jest jednak z nią w pełni równoważna. Wreszcie w paragrafie 4.2 prezentujemy kolejne etapy opracowania skutecznej metody pomiaru temperatury i rozkładu prędkości poprzez wykorzystanie rezonansów odrzutu mierzonych za pomocą dodatkowych, daleko odstrojonych od przejścia atomowego wiązek światła. Te wyniki są wedle naszej wiedzy pierwszymi, w których udało się obserwować i izolować rezonanse odrzutu w atomach znajdujących się we włączonej pułapce magnetooptycznej.

4.1.1 Pomiar absorpcji polaryzacji liniowej

Pierwszy pomysł na eliminację tła pochodzącego od rezonansów ramanowsko-zeemanowskich wykorzystuje fakt, że struktura RZR oraz przyczynki RIR pochodzące od wiązek poprzecznych do wiązki próbkującej nie zależą od jej polaryzacji. Dlatego odjęcie od siebie widm zmierzonych dla polaryzacji σ^+ i σ^- eliminuje te składowe, pozostawiając jedynie struktury związane z przekazem pędu pomiędzy wiązką prób- kującą i wiązkami pułapkującymi tworzącymi z nią kąt α i $180^\circ - \alpha$ (rysunek 3.1 na stronie 36). Tak przygotowane widma mogłyby służyć do pomiaru temperatury zimnych atomów. Ze względu na (niezależne od temperatury zimnych atomów) fluk- tuacje wypadkowego pola świetlnego w pułapce, które mają wpływ na rezonanse ramanowsko-zeemanowskie jest bardzo ważne, aby odejmowane krzywe mierzone były dokładnie w tych samych warunkach, tzn. jednocześnie, a nie kolejno po sobie, tak jak to było w przypadku wyników przedstawionych w rozdziale 3. Rozwiązaniem tego problemu jest użycie wiązki próbki o polarizacji liniowej, a więc będącej złożeniem polaryzacji kołowych σ^+ i σ^-. Te dwie składowe są inaczej absorbowane w chmurze zimnych atomów (dichroizm kołowy), ponieważ każda z nich indukuje procesy RIR z udziałem wiązek pułapkujących o innej polaryzacji (jak wyjaśniono w paragrafie 3.3.2). Po przejściu przez chmurę można rozseparować obie składowe wiązki próbki – polarymetrycznie przez użycie ćwierćfalówki i ustawionej za nią polarymetrycznej kostki światłowodzącej, tak jak pokazuje schemat 4.1. Cwierćfalówka o osi optycznej tworzącej kąt 45° z kierunkiem początkowej polaryzacji liniowej zapewnia niezależność od polaryzacji kołowej na światło spolaryzowane liniowo w kierunku poziomym i pionowym, wykrywane przez detektory badające światło odbite i przezchodzące przez kształt światłowodzącej. Ta metoda wymaga użycia dwóch dobrze wykalibrowanych detektorów i elementów polaryzacyjnych wysokiej jakości oraz ich precyzyjnego ustawienia. Ponadto, co jest znacząco poważniejszym ograniczeniem, pomiar rezonansów odrzutu przez użycie wiązki spolaryzowanej liniowo nie jest do- kładnie równoważny z niezależnym pomiarem obu polaryzacji liniowych. Jest on bowiem dodatkowo czuły na ewentualne koherencje, które mogą istnieć pomiędzy podpoziomami zeemanowskimi różnimi, które oznaczają $\Delta m = \pm 2$. Istnienie takich koheren-
4.1. Wprowadzenie

Rys. 4.1: Schemat układu optycznego pozwalającego rozseparować dwie składowe kołowe polaryzacji liniowej po przejściu wiązki próbkującej przez chmurę zimnych atomów. Początkową polaryzację liniową wiązki można przedstawić jako złożenie dwóch polaryzacji kołowych, 1 i 2. Te dwie składowe są w chmurze atomów absorbowane w różny sposób. Następnie po przejściu przez odpowiednio ustawioną ćwierćfalówkę składowe kołowe zamieniane są na liniowe 1' i 2', które zostają rozseparowane przestrzennie na kostce światłowodzielącej i trafiają do dwóch detektorów ABS 1' i ABS 2'.

cji może modyfikować widma absorpcji w stosunku do widm dla czystych polaryzacji kołowych rejestrowanych niezależnie. Z tych przyczyn podany tu pomysł nie został wykorzystany w praktyce, szczególnie że udało się opracować o wiele wygodniejszą metodę pomiaru rezonansów odrzutu, opisaną w paragrafie 4.2 tego rozdziału. Zanim do niej przejdziemy, omówimy poniżej jeszcze jedną metodę eliminacji przyczynków ramanowsko-zeemanowskich w widmach absorpcji.

4.1.2 Zastosowanie pola radiowego

Prezentowany w tym paragrafie pomysł na eliminację tła ramanowsko-zeemanowskiego wykorzystuje fakt, że amplituda przejść ramanowskich jest proporcjonalna do różnicy populacji pomiędzy stanem końcowym a początkowym. Wyrównywanie populacji tych stanów prowadzi do zmniejszenia amplitudy lub w skrajnym przypadku do całkowitego ich zaniku. Jak pamiętamy z paragrafu 3.3.1, populacje podpoziomów zeemanowskich stanu podstawowego atomu decydujące o amplitudzie RZR ustalają się w wyniku pompowania optycznego (rysunek 3.3). Czynnikiem, który może doprowadzić do zmiany obsadzeń tych pozio-
mów jest zmienne pole magnetyczne o częstości rezonansowej z rozsuniętymi przez światło poziomami zeemanowskimi (zakres pól radiowych - rf), co schematycznie pokazuje rysunek 4.2. Zastosowanie takiego pola rf powinno zmniejszyć amplitudę poszczególnych rezonansów ramanowsko-zeemanowskich lub całkowicie uniemożliwić dyskretne przejścia za nie odpowiedzialne. Taki pomiar byłby więc zastosowaniem metod pompowania optycznego i rezonansu rf szeroko stosowanych w latach 60 [64]. Z kolei rezonans odrzutu nie ulega zmianie w wyniku przejść magnetycznych ponieważ jest skutkiem przejść pomiędzy kontinuum stanów pędowych atomów i nie jest czuły na zmiany obsadzenia poszczególnych stanów wewnętrznych atomu.

Należy jednak pamiętać, że w odniesieniu do dawnych doświadczeń z rezonansami rf i pompowaniem optycznym różnice energii pomiędzy kolejnymi przesuniętymi światłem podpoziomami nie są jednakowe. W takim razie pole radiowe o ustanowionej częstości może wpływać tylko na jeden z szeregu rezonansów zachodzących pomiędzy wszystkimi parami podpoziomów. Ponadto jednorodne i niejednorodne
Rys. 4.2: Przesunięte światłem podpozioy zeemanowskie stanu podstawowego $|F_s = 3⟩$ z rysunku 3.3 i ich populacje ustalone w wyniku pompowania optycznego oraz strzałki symbolizujące pole rf indukujące przejścia pomiędzy sąsiednimi podpoziomami, wyrównujące ich obsadzenia.

W ramach tej pracy przeprowadzono próby zastosowania omówionej metody do eliminacji przyczynków RZR w widmach absorpcji. Pole o częstości radiowej zostało wygenerowane w prostym układzie przez cewkę zasilaną generatorem funkcyjnym. Cewka ta, o promieniu $R = 3\, \text{cm}$, składała się z 13 zwojów drutu miedzianego o średnicy $\phi = 1.5\, \text{mm}$. Zbadano wpływ na widma absorpcji pola radiowego o częstości z zakresu 1 Hz–2 MHz. Zakres ten zawiera częstości odpowiadające różnicom energii przesuniętych światłem wiązek pułapkujących podpoziomów zeemanowskich. Mimo to nie zaobserwowano żadnego wpływu pola radiowego na mierzone widma absorpcji. Możliwe przyczyny tej sytuacji są następujące:

1. Zbyt mała moc wytworzonego pola radiowego, która sprawiała, że wpływ pola magnetycznego na zmianę obsadzenia podpoziomów zeemanowskich był za niedbawalnie mały lub też że zmieniły się obsadzenia tylko w nielicznych atomach znajdujących się w tym miejscu pułapki, gdzie podlegały one oddziaływaniu ze światłem o odpowiedniej częstości Rabiego. Rozwiązaniem tego problemu byłoby zbudowanie specjalnego, przestrajalnego układu rezonansowego, który generował by wystarczająco silne pola radiowe, aby przez poszerzenie mocą dostroić się do całego zakresu występujących w pułapce częstości Rabiego. Jeszcze większa moc potrzebna by była, aby wyrównać obsadzenia we wszystkich, różne przesuniętych światłem, parach podpoziomów zeemanowskich stanu podstawowego i tym samym zupełnie wyeliminować w widmach absorpcji przyczyny związane z RZR.

2. Fakt, że pojedyncza cewka wytwarza w przestrzeni pole niejednorodne. Lepszym rozwiązaniem byłoby użycie dwóch cewek w układzie Helmholtza. Jednorodność tego pola była by tym lepiej zapewniona, im większa była by średnica cewek. Duża średnica wiąże się jednak ze wzrostem indukcyjności a to ogranicza pasmo przenoszenia wysokich częstości. Z drugiej strony, w przypadku uzyskania w sposób opisany w punkcie 1. pola radiowego o wystarczająco dużej mocy, jego niejednorodność przestrzenna nie była by tak istotna, ze względu na poszerzenie mocą.
Powyższe rozważania prowadzą do wniosku, że pole rf mogące służyć do eliminacji przyczynków RZR w widmach absorpcji musi mieć wystarczająco dużą moc. Trzeba zwrócić uwagę, że takie pole nie pozostaje bez wpływu na własności spułapkowanych atomów. Już przy mocach generowanych przez cewki użyte w testowych pomiarach zaobserwowano kolektywny ruch chmury związanego z modyfikacją pułapkującego pola kwadrupolowego przez pole rf o częstości kilku Hz. Oznacza to, że pole rf może zaborac temperaturę żmiennej próbki atomowej (np. poprzez zjawisko parametrycznego rezonansu) a tym samym nie nadaje się do jej pomiaru.

4.1.3 Modulacja światła pułapkującego.

Z pozoru równoważną metodą modyfikacji populacji podpoziomów zeemanowskich jest amplitudowa lub częstotliwościowa modulacja światła pułapkującego. Taka modulacja wytworza pasma boczne odległe od częstości nośnej wiązek pułapkujących ω = ω_C o częstość modulacji ω_mod. Wartość ω_mod może być dobrana do różnicy częstości pomiędzy dwoma sąsiednimi podpoziomami stanu dolnego. W takim przypadku fotony o nowej częstości ω± = ω_C ± ω_mod wspólnie z fotonami o częstości nośnej indukują przejścia ramanowskie, tak jak pokazuje rysunek 4.3 na przykładzie podpoziomów |3, 0⟩ i |3, ±1⟩. Warunkiem poprawnego działania tej metody jest jed-

nak, aby fotony o częstości przesuniętej o ω_mod względem fotonów o częstości nośnej różniły się od nich polaryzacją, tak aby wspólnie indukowały przejścia ze zmianą Δm = ±1. Tylko wtedy mogą one zmienić rozkład populacji w parze sąsiednich podpoziomów i tym samym zmodyfikować dyskretne przyczynki od przejść ramanowskich. Tymczasem fotony powstające jako wynik modulacji AM lub FM różnią się od źródlowych częstością, ale nie polaryzacją. To sprawia, że modulacja
światła pułapki nie może być użyta do wyrównania populacji sąsiednich podpozio-
mów zeemanowskich stanu zeemanowskiego. Tym samym nie jest ona równoważna
z omówioną powyżej metodą użycia pola radiowego.

4.2 Metoda pomiaru rezonansów odrzutu
poza rezonansem

4.2.1 Wprowadzenie

W rozdziale 1 tej pracy pokazaliśmy, że rezonanse odrzutu, rejestrowane w widmie
absorpcji dla wystarczająco zimnych atomów, mogą służyć jako narzędzie spektro-
skopowe do wyznaczania ich rozkładu prędkości a w przypadku równowagowym
również temperatury. Cytowaliśmy przykłady eksperymentów, w których tę metodę
zastosowano z powodzeniem w odniesieniu do atomów w melasie optycznej. Nie
przeprowadzono jednak takich pomiarów dla atomów spułapkowanych w MOT.

Wyniki z pracy [20] prezentowane tu w rozdziale 3 pokazują, że we włączonej
pułapce magnetooptycznej widma absorpcji zmierzone wokół częstości wiązek pu-
łapkujących (traktowanych jako wiązki pompujące) wykazują bardzo bogatą struk-
turę z rezonansom odrzutu i ramanowsko-zeemanowskim. Dodatkową komplikacją
jest fakt, że ten drugi przyczynek jest modyfikowany przez niekontrolowaną interferencję światła pułapki i jej niejednorodne pole magnetyczne. Szczególnie trudne
jest zagadnienie średniowania widm absorpcji po różnych częstościach Rabiego i ko-
nieczność uwzględnienia różnych polaryzacji wypadkowego pola światelnego pułapki.
Na początku tego rozdziału pokazaliśmy, że warunkiem użycia takich widm do termometrów zimnych atomów jest eliminacja przyczynki RZR, i to już na etapie po-
miaru. Zaprezentowaliśmy pomysły takich eliminacji i ich praktyczne ograniczenia.
Należy jednak zwrócić uwagę, że skomplikowane tło RZR występujące w mierzo-
nych widmach jest specyfiką rozważanych dotychczas pomiarów, w których wiązki
pułapkujące biorą udział w indukowaniu przejść ramanowskich. To spostrzeżenie
jest kluczowe dla znalezienia nowego sposobu pomiaru rezonansów odrzutu dla spu-
łapkowanych atomów.

4.2.2 Zalety metody

Okazuje się, że stosunkowo prostą, a zarazem bardzo skuteczną metodą eliminacji
przyczynki RZR jest wprowadzenie do działającej pułapki dodatkowej wiązki (lub wiązek) o kontrolowanych własnościach, która przejmie rolę wiązki pompującej w
przejściach ramanowskich dotychczas odgrywaną przez wszystkie wiązki pułapku-
jące. Aby nie zaburzać pracy pułapki, a więc między innymi temperatury atomów,
ta wiązka musi być odstrojona daleko od przejścia atomowego. W opisywanych w
dalszej części tej pracy pomiarach to odstrojenie wynosi \(\Delta = 2\pi \cdot 140 \text{ MHz} \approx 23\Gamma \).
Widma absorpcji mierzone są teraz dla częstości wiązki próbującej („próbki”) \(\omega_{pr} \)
równie w przybliżeniu częstości nowej wiązki pompującej („pompy”) \(\omega_{pump} \), a nie,
tak jak w poprzednio przeprowadzanych pomiarach [20], częstości wiązek pułapku-
jących. Poniżej omówimy zalety tego rozwiązania:

1. Wiązki pompująca i próbująca mogą teraz tworzyć ze sobą dowolny kąt, w
 szczególności mały \(\theta \) lub duży \(180^\circ - \theta \). Tym samym można błądać rozkład
prędkości zimnych atomów wzdłuż dowolnego kierunku, zawsze prostopadłego do dwusiecznej kąta pomiędzy wiązką pompującą i próbującą, w szczególności, gdy $\theta \ll 1$, wzdłuż lub w poprzek wiązki próbującej. W poprzedniej konfiguracji rolę pomp w rezonansach odrzutu pełniły zawsze trzy z wiązek pułapkujących mające polaryzację próbki, w tym dwie tworzące z nią kąt 90° i $90^\circ \pm \alpha$.

2. Natężenie wiązki pompującej może być ustalone dowolnie, niezależnie od natężenia wiązki pułapkujących. Pozwala to na pomiary zależności temperatury atomów od natężenia I_{trap} pułapki bez wpływu tego parametru na jakość sygnału RIR.

4. Najbardziej istotna jest jeszcze inna zaleta nowej konfiguracji. Trzeba pamiętać o tym, że badane atomy przez cały czas znajdują się we włączonej pułapce magnetooptycznej. Są więc poddane działaniu wypadkowego pola sześciu wiązek pułapkujących. Przesunięcie światłem podpoziomów stanu dolnego i ich obsadzenia ustalają się więc w dalszym ciągu tak, jak opisano w paragrafie 3.3.1\(^1\). Poprzednio, gdy w przejściach ramanowskich brały udział fotony wiązki pułapkującej, wygodnie było związać oś kwantyzacji z kierunkiem E wypadkowego pola. Pole to jednak w różnych miejscach pułapki miało inną orientację, a więc wiązka próbująca o określonej polaryzacji mogła indukować przejścia o wszystkich możliwych $\Delta m = 0, \pm 1$. Dlatego w widmach prezentowanych w poprzednim rozdziale obserwowano zawsze dwa przyczynki. Rezonanse ramanowsko-zeemanowskie, związane z przejściami z $\Delta m = \pm 1$, zachodzącymi w tych miejscach, w których polaryzacja próbki jest kołowa występowały wspólnie z rezonansami odrzutu zachodzącymi dla próbki spolaryzowanej tak samo, jak wypadkowe pole wiązek pułapkujących. Obecnie przejścia ramanowskie indukowane są przez fotony pochodzące z wiązki próbującej, a więc wiązka próbująca o określonej polaryzacji mogła indukować przejścia o wszystkich możliwych $\Delta m = 0, \pm 1$. Dlatego w widmach prezentowanych w poprzednim rozdziale obserwowano zawsze dwa przyczynki.

Dowolność w wyborze polaryzacji pompy i próbki sprawia, że możemy selektywnie indukować przejścia ramanowsko-zeemanowskie lub przejścia pomiędzy stanami pędowymi atomów prowadzące do rezonansów odrzutu. Przykładowo, zastosowanie wiązki pompującej spolaryzowanej liniowo i próbującej w takiej konfiguracji nie wymagaą istnienia rezonansowego poziomu górnego, a istotna jest jedynie różnica energii stanu początkowego i końcowego.

\[^1\]Wiązka pompująca nie zaburza tych procesów, ponieważ jest silnie nierezonansowa.
Rys. 4.4: (a) Schematycznie pokazane fotony wiązek: pułapkującej (szara strzałka), pompującej (biała strzałka) i próbującej (czarna strzałka), (b) prze- sumiête światłem wiązek pułapkujących podpoziomy zeemanowskie poziomu dolnego \(|F_g = 3\rangle\) i górnego \(|F_e = 4\rangle\) przejścia pułapkującego, (c) parabole pęd-energia odpowiadające podpoziomom stanu dolnego i przejścia ramanowskie indukowane przez wiązkę pompującą i próbującą, odstojone daleko od rezonansu atomowego w stronę wyższych częstości, jednakowo spolaryzowane. Te przejścia prowadzą do obserwacji rezonansów odrzutu na zerowym tle, jak opisano w tekście. Rysunek nie zachowuje skali częstości.
cały zespół podpoziomów zeemanowskich wraz z górnymi poziomami wirtualnymi można przedstawić jako zespół niezależnych atomów dwu poziomowych, tak jak to pokazuje rysunek 4.4 (c). Fotony pompy i próbki zmieniają jedynie stan pędu atomu, a rezonanse odrzutu związane z przejściami dla kolejnych paraboli pęd-energia kinetyczna mają taki sam kształt i można je prosto sumować. Mierzone widmo jest więc pochodną z funkcji rozkładu prędkości, a w przypadku równowagi termodynamicznej jego szerokość w jest bezpośrednio związana z temperaturą T atomów, zgodnie ze wzorem (1.49).

4.2.3 Różne konfiguracje eksperymentalne pomiaru RIR

Przedstawiona powyżej metoda pomiaru RIR poza rezonansem atomowym wymaga wprowadzenia do pułapki dwóch wiązek: pompującej i próbkującej. Wiązki te mają tę samą polaryzację (w naszym przypadku liniową) i zbliżoną do siebie częstotliwość oraz są odstronne daleko od przejścia atomowego (w naszym przypadku $2\pi \cdot 140$ MHz w stronę wyższych częstotliwości). W zależności od zastosowanej geometrii pomiaru można badać rozkład prędkości w różnych kierunkach (jednym lub wielu jednocześnie). Należy jednak pamiętać, że dokładność pomiaru zależy od kąta i jest znacząco wyższa dla wiązek tworzących ze sobą duży kąt.

W pomiarach stosowaliśmy cztery konfiguracje:

1. pompa i próbka tworzące mały kąt θ,
2. pompa i próbka tworzące duży kąt $180^\circ - \theta$,
3. dwie przeciwbieżne pompy tworzące z próbką kąty θ i $180^\circ - \theta$,
4. dwie przeciwbieżne próbki tworzące z pompą kąty θ i $180^\circ - \theta$.

Konfiguracja 1., w której wiązka próbkująca tworzą mały kąt z pompującą jest często stosowana przy pomiarach rezonansów odrzutu. Schemat doprowadzenia wiązka do pułapki w tej konfiguracji przedstawia rysunek 4.5 (a). Wiązka pompująca przechodzi przez półfalówkę i polaryzującą kostkę światło dzielącą. Ten układ polaryzuje wiązkę i jednocześnie pozwala na regulację jej mocy. Po przejściu przez chmurę zimnych atomów wiązka pompująca zostaje wygaszona. Wiązka próbkująca jest polaryzowana w ten sam sposób, co pompa, następnie przez dwa lustra jest kierowana do pułapki tak, aby w obszarze chmury przeciąć się z prawie współbieżną z nią wiązką pompującą. Po przejściu przez chmurę próbka pada na detektor absorpcji. Rejestrowane w takiej geometrii rezonanse odrzutu związane są z rozkładem prędkości zimnych atomów w kierunku prawie prostopadłym do kierunku rozchodzenia się wiązka. Zgodnie ze wzorem (1.47), te szerokości są bardzo małe ze względu na czynnik geometryczny postaci $1/\sin^2(\theta/2)$. Z tego względu rezonanse RIR zmierzone w konfiguracji 1. zostały w eksperymencie wykorzystane do czułej kalibracji osi częstości, tak jak to opisano w paragrafie 4.3.1. Jednak wyznaczenie temperatury z wykorzystaniem widm RIR uzyskanych dla małego kąta θ jest obarczone dużym błędem związonym z niedokładnością geometrycznego pomiaru tego kąta (dyskusja w paragrafie 4.6). Ponadto szerokość tych rezonansów jest bliska granicy zdolności

Na rysunku dla przejrzystości zwiększono kąt θ, więc „współbieżność” wiązek nie jest wyraźnie widoczna.
Rys. 4.5: Schemat doprowadzenia wiązek pułapkujących, pompujących i próbkujących do pułapki. Rysunek (a) przestawia konfigurację 1., w której wiązki pompująca i próbkująca są prawie współbieżne. Na rysunku (b) pokazano konfigurację 2., gdy pompa i próbka tworzą ze sobą duży kąt i próba po pojedynczym przejściu przez chmurę pada na detektor. Zastąpienie wygaszacza wiązki pompującej przez lustro prowadzi do konfiguracji 3. z dwiema przeciwbieżnymi wiązkami pompującymi – rysunek (c). Wreszcie w konfiguracji 4. na rysunku (d) to wiązka próbująca po przejściu przez chmurę jest zawraca na lustrem i po ponownym przejściu przez chmurę jest kierowana na detektor umieszczony za płytką światłodzielącą. Każda z przedstawionych konfiguracji prowadzi do rejestracji innych sygnałów absorpcji, tak jak to opisano w tekście.
rozdzielać naszego eksperymentu, co zwiększa błąd jej wyznaczenia. Dlatego przeno- 63 w wszystkie pomiary temperatury w przypadku równowagowym przeprowadzone były w **konfiguracji 2**, w której wiązka próbująca tworzy duży kąt z wiązką pom- pującą. Schemat takiego eksperymenu przedstawiony jest na rysunku 4.5 (b).

Rysunek 4.6 przedstawia schematycznie geometri pomiaru dla małego i dużego kąta pomiędzy wiązkami i przykładowe widma uzyskane w obu przypadkach. Zgod- nie z przewidywaniami, zmierzone rezonanse odrzutu występują na zerowym tle.

![Rysunek 4.6](image)

Rys. 4.6: W górnej części rysunku geometria pomiaru ze zaznaczonym kierunkiem przekazu prędu dla małego kąta $\theta \approx 4.5^\circ$ (a) i dużego kąta $\theta \approx 175.5^\circ$ (b) pomiędzy wiązkami. W dolnej części rysunku przykładowe widma (szare krzywe) uzyskane dla obu geometrii w typowych warunkach pracy pułapki i dopasowane do nich sygnały teoretyczne (czarne krzywe) dane wzorem (1.47).

Natężenie wiązek pułapujących $I_{\text{trap}} = 50 \mu W/mm^2$, ich odstrojenie od re- zonansu atomowego $\Delta = -3.12 \Gamma$, natężenie wiązki pompującej $I_{\text{pump}} = 280 \mu W/mm^2$, jej odstrojenie od rezonansu atomowego $\Delta_{\text{pump}} = 23.4 \Gamma$, natęże- nienie wiązki repompującej $I_{\text{repumper}} = 150 \mu W/mm^2$, podłużny gradient pola magnetycznego $\partial_z B = 12.2$ Gauss/cm.

Ich kształt zgadza się bardzo dobrze z krzywą teoretyczną daną wzorem (1.47) z rozdziału 1, opisującym sytuację równowagi termodynamicznej. Do takich widm dopasowywano krzywą zadaną wzorem

$$r(x, y_0, x_0, A, \xi) = y_0 - A(x - x_0) \exp \left[-\frac{(x - x_0)^2}{\xi^2} \right].$$ (4.1)

Parametr y_0 odpowiada za poziom tła sygnału, A decyduje jego amplitudzie a x_0 uwzględnia ewentualny błąd w wyznaczeniu zerowego odstrojenia wiązki pompującej od próbującej podczas kalibracji osi częstotliwości (paragraf 4.3.1). Błąd ten nie ma
wpływ na wyznaczenie temperatury atomów, która zależy tylko od przeskalowanej szerokości widna \(\xi = w/\sqrt{2} \) (z porównania (1.47), (1.49) i (4.1)) według wzoru

\[
T = \frac{m}{8k_Bk^2\sin^2(\theta/2)}\xi^2, \tag{4.2}
\]

co po podstawieniu za \(k_B = 1.38065 \cdot 10^{-23} \text{ J/K} \), \(k = 8.0551 \cdot 10^6 \text{ m}^{-1} \), \(m = 1.41 \cdot 10^{-25} \text{ kg} \) można dla uproszczenia napisać

\[
T[\mu\text{K}] = \frac{C}{\sin^2\theta/2}(\xi[\text{MHz}])^2, \tag{4.3}
\]

gdzie \(C = 776.717 \mu\text{K/MHz}^2 \).

Z otrzymanej jako parametr dopasowania przeskalowanej szerokości \(\xi \) zmierzonych sygnałów wyznaczono temperaturę \(T \) atomów. W przypadku (a) małego kąta \(\theta = 4.5^\circ \) otrzymano wynik \(\xi = 12.8 \text{ kHz} \), co daje \(T = 83 \mu\text{K} \pm 48 \mu\text{K} \), w przypadku (b) dużego kąta \(\theta = 175.5^\circ \) \(\xi = 321 \text{ kHz} \) i \(T = 80 \mu\text{K} \pm 2 \mu\text{K} \). Sposób szacowania błędu omówiony jest szczegółowo w paragrafie 4.6.

Schemat pomiaru w konfiguracji 3. przedstawia rysunek 4.5 (c). Dzięki zastosowaniu dwóch wiązek pompujących dostępne są jednocześnie dwa kierunki pomiaru rozkładu prędkości. Rzeczywiście, wiązka próbkująca tworzy z jedną z pomp mały kąt \(\theta \) a z drugą, odbitą, kąt \(180^\circ - \theta \). W widmie absorpcji wiązki próbkującej rejestruje się jednocześnie wąski i szeroki RIR. Wążną cechą tej konfiguracji w kontekście pomiaru temperatury jest fakt, że dwie silne, przeciwiebieżne wiązki pompujące o tej samej polaryzacji interferują ze sobą, co prowadzi do powstania periodycznego potencjału o okresie przestrzennym \(\lambda/2 \) (paragraf 5.2). W minimach tego potencjału pułapkowane są atomy o odpowiednio niższej temperaturze. W widmach absorpcji jednocześnie z rezonansami odrzutu pochodzącymi od atomów swobodnych rejestrowane są więc rezonanse pochodzące od przejść Ramanowskich pomiędzy poziomami wibracyjnymi atomów spułapkowanych w sieci optycznej. Samo zjawisko wytworzenia w działającej pułapce magnetooptycznej jednowymiarowej sieci optycznej i możliwość sterowania parametrami tej sieci są bardzo ciekawe. Temu zagadnieniu poświęcony jest rozdział 6 niniejszej pracy. Jednak z punktu widzenia pomiaru temperatury powstawanie sieci optycznej jest niekorzystne, gdyż prowadzi do pojawienia się dodatkowych struktur w mierzonych widmach, utrudniających precyzyjną analizę rezonansów odrzutu. W takim przypadku wyznaczenie szerokości rezonansów odrzutu nie jest wystarczająco dokładne do zbadania rozkładu prędkości.

Rozwiązaniem, które umożliwia jednoczesny pomiar rozkładu prędkości atomów w dwóch kierunkach, a nie prowadzi do lokalizacji atomów w sieci optycznej jest konfiguracja 4. przedstawiona na rysunku 4.5 (d). W tym przypadku stosuje się tylko jedną wiązkę pompującą. Natomiast wiązka próbkująca po przejściu przez chmurę jest zawracana i rozchodzi się dokładnie przeciwnie do swojego początkowego kierunku. Efekty sieci optycznej na słabej \((P_{total} \approx 2 \mu\text{W}) \) wiązce próbkującej można zaniedbać ze względu na bardzo małą głębokość tej sieci (wzór (5.15)). Propagując wzdłuż kierunku tworzącego z pompą mały kąt \(\theta \), wiązka próbkująca rejestruje wąski rezonans odrzutu związany z przekazem pędu (a więc i rozkładem prędkości) wzdłuż kierunku prostopadłego do obu wiązec. Po odbiciu od lustra ta zmieniona już spectralnie (z „zarejestrowanym” wąskim rezonansem odrzutu) wiązka przechodzi z powrotem przez chmurę. Tym razem tworzy z pompą duży kąt \(\theta \) i rejestruje dodatkowo szeroki rezonans odrzutu związany z przekazem pędu wzdłuż obu wiązec. Po
przejściu przez płytkę półprzepuszczalną część wiązki próbkującej pada na detektor. Rejestrowane widma zawierają szeroki i wąski rezonans odrzutu, co umożliwia jednoczesne zbadanie temperatury i rozkładu prędkości dla dwóch prostopadłych kierunków.

Do zmierzonych w tej konfiguracji widm dopasowywano zależność teoretyczną daną ogólnym wzorem (4.4).

\[y_{RIR}(x, y_0, x_{01}, A_1, \xi_1, x_{02}, A_2, \xi_2) = y_0 + r_1(x, 0, x_{01}, A_1, \xi_1) + r_2(x, 0, x_{02}, A_2, \xi_2), \quad (4.4) \]

gdzie wyraz \(y_0 \) odpowiada za poziom tła a wzór \(r_i = r(x, y_0, x_{0i}, A_i, \xi_i) \) opisujący pojedynczy sygnał odrzutu ma postać (4.1).

Na rysunku 4.7 pokazano przykładowe widma uzyskane w konfiguracji 3. i 4.

Rys. 4.7: Górna część rysunku przedstawia geometrię pomiaru dla dwóch przeciwwieżnych wiązek pompujących i jednej wiązki próbującej (a) oraz dla dwóch wiązek próbujących i jednej wiązki pompującej. W dolnej części rysunku zamieszczono przykładowe widma (szare krzywe) uzyskane dla obu geometrii w typowych warunkach pracy pułapki i dopasowane do nich sygnały teoretyczne (czarne krzywe). W obu przypadkach widoczny jest szeroki i wąski rezonans RIR. Dodatkowo w przypadku (a) widać również rezonanse związane z lokalizacją atomów w jednowymiarowej sieci optycznej. Warunki eksperymentalne takie, jak podano w podpisie do rysunku 4.6.

Oba widma zawierają przyczynki związane z odrzutem wzdłuż dwóch prostopadłych kierunków. W widmie zmierzonym w konfiguracji 3. (rysunek 4.7 (a)) dodatkowo widoczne są rezonanse pochodzące od atomów zlokalizowanych w jednowymiarowej sieci optycznej. Konfiguracja 4. (widmo w części (b) rysunku) była stosowana do wyznaczania anizotropii rozkładu prędkości w dwóch prostopadłych kierunkach, co omówiono w paragrafie 4.5.
4.3 Wyniki pomiarów temperatury w zależności od parametrów pułapki

W niniejszym rozdziale przedstawiamy szereg wyników doświadczalnych. Są to zależności temperatury chmury zimnych atomów od różnych parametrów, takich jak natężenie wiązki, ich odstrojenie od rezonansu atomowego, wartość gradientu pola magnetycznego. Pomiary te zostały przeprowadzone omówioną wcześniej metodą wykorzystującą rezonanse odrzutu. Wszystkie prezentowane tu wyniki (oprócz wyraźnie zaznaczonych wyjątków) zostały uzyskane w konfiguracji 2. (paragraf 4.2.3, rysunek 4.5 (b)). Registrowano uśrednione po 160 przebiegach widmo absorpcji wiązki próbkującej po przejściu przez chmurę zimnych atomów, w której przecinała się ona z wiązką pompującą. Pojedynczy przebieg trwał około 0.25 sekundy co daje czas jednego pomiaru temperatury około 40 sekund. Ponieważ obie wiązki były liniowo spolaryzowane w tym samym kierunku, registrowano sygnał odrzutu na płaskim (tj. pozbawionym jakichkolwiek innych przyczyn rezonansowych) tle. Mierzony w podanej geometrii sygnał związany jest z rozkładem prędkości zimnych atomów w kierunku rozchodzenia się wiązek diagnostycznych. W przypadku zakładanej tu równowagi termodynamicznej próbki atomowej jej temperatura proporcjonalna jest do przeskalowanej szerokości widma zgodnie ze wzorem (4.3).

Ponieważ do wyznaczania temperatury potrzebna jest znajomość szerokości widma, konieczne jest precyzyjne wyznaczenie odstrojenia δ, czyli inaczej kalibracja osi częstości. Tenu zagadnieniu poświęcony jest następny paragraf. Natomiast dyskusję niepewności pomiarowej wyznaczenia temperatury zawiera paragraf 4.6.

4.3.1 Kalibracja osi częstotliwości

Jak opisano w rozdziale 2, przesunięcie częstotliwości wiązki lasera próbkującego ustalane jest przez podanie na generator VCO modulatora akustooptycznego AOM-1 zadanej wartości napięcia. Zmiana tego przesunięcia, czyli przestrajanie lasera, odbywa się przez podanie na to samo wejście dodatkowo liniowego przebiegu trójkątnego. Z kolei wartość przesunięcia częstotliwości wiązki pompującej ustalana jest przez syntetyzer.

Kalibracja osi częstości polega na przyporządkowaniu danym wartościom napięcia odpowiedniego odstrojenia w jednostkach częstotliwości. Standardową metodą kalibracji jest pomiar częstotliwości generowanej przez układ VCO w funkcji podawanych na niego różnych, dokładnie znanych wartości stałego napięcia. W ten sposób otrzymuje się zależność częstotliwości AOM-1 od napięcia, którą łatwo prze liczyć na odstroszenie δ, korzystając ze schematu przesunięcia częstotliwości laserów w układzie doświadczalnym (rozdział 3). Metoda ta wymaga użycia precyzyjnego źródła napięciowego i miernika częstości.

W tej pracy kalibracja została przeprowadzona bez wykorzystania tych przyrządów i to w sposób dokładniejszy. Wykorzystaliśmy fakt, że widmo RIR jest anty symetryczne i w rozważanej sytuacji równowagi termodynamicznej przyjmuje wartość zero dokładnie dla zerowego odstrojenia. Dodatkowo, użycie syntetyzera umożliwia bardzo precyzyjne (z dokładnością do 10 Hz) ustalenie przesunięcia czę stotliwości wiązki pompującej. Procedura kalibracji polega na pomiarze widm rezonansów odrzutu dla różnych wartości tego przesunięcia. Mierzone widma przecinają zero dla różnych wartości napięcia sterującego częstotliwością lasera próbującego, ale zawsze wtedy, gdy odpowiada ona zerowemu odstrojeniu. To napięcie znajdujemy
Rys. 4.8: Widma rezonansów odrzutu uzyskane dla różnych odstrojeń δ, zmienianych przez zmianę częstotliwości syntetyzera o wartość podaną przy każdym wykresie. W części (a) rysunku pokazano widma uzyskane dla małego kata θ pomiędzy pompą a próbką a w części (b) widma w konfiguracji z odbita wiązką próbującą. Te widma posłużyły do dokładnej kalibracji osi częstości, jak opisano w tekście.
jako parametr \(x_0 \) dopasowania zależności teoretycznej (4.1) do kolejnych mierzonych widm, wykreślonych w funkcji napięcia sterującego częstotliwością próbki, rejestrowanego jednocześnie z widmem RIR. Na rysunku 4.8 (a) pokazano serię widm zmierzonych w konfiguracji 2. dla małego kąta \(\theta \) pomiędzy pompą i próbką, a w części (b) widma wykorzystane do kalibracji w szerokim zakresie, uzyskane w konfiguracji 4. z odbitą wiązką próbującą. W tym drugim przypadku do widm dopasowuje się krzywą będącą sumą dwóch zależności (4.1) o różnych amplitudach i szerokościach, ale tej samej wartości \(x_0 \). Zwiększa to dokładność wyznaczenia \(x_0 \).

Wykres 4.9 przyporządkowuje określonym wartościom napięcia konkretne przesunięcia częstotliwości syntetyzera względem częstotliwości 80 MHz, która odpowiada częstotliwości AOM1 dla zerowego napięcia przestrajającego. Dopasowana zależność liniowa pozwala przeliczyć zmierzony przebieg napięciowy na odstępowanie \(\delta \) w jednostkach częstotliwości.

Rys. 4.9: Wykres kalibracji osi częstotliwości uzyskany jako wynik analizy widm z rysunku 4.8 (b), jak opisano w tekście.

4.3.2 Wpływ wiązek pompujących na temperaturę atomów

Aby opisana w tej pracy metoda pomiaru temperatury dawała poprawne wyniki, konieczne jest, aby samo narzędzie pomiarowe, czyli wiązki diagnostyczne, nie wpływało na badaną wielkość. Szybkość emisji spontanicznej, która jest miarą podgrzewania atomów jest proporcjonalna do \(I/\Delta^2 \), gdzie \(I \) jest natężeniem wiązki a \(\Delta \) jej odstrojeniem od rezonansu. Oznacza to, że silna, ale daleko odstrojona wiązka pompująca nie powinna wpływać na temperaturę badanej próbki atomowej poprzez jej podgrzewanie w wyniku sił ciśnienia promieniowania. Ponieważ amplituda przejścia ramanowskich maleje jak \(1/\Delta \), należy tak dobrać odstrojenie, aby przy wystarczająco dużej amplitudzie sygnału efekt podgrzewania atomów przez wiązkę pompującą był zaniedbywalny. W naszym przypadku to odstrojenie zostało ustalone na \(\Delta_{\text{pump}} = 2\pi \cdot 140 \text{ MHz} \approx 23 \Gamma \).

![Wykres kalibracji osi częstotliwości](image-url)
Aby oszacować efekty związane z podgrzewaniem próbki atomowej przy tym odstrojeniu, przeprowadzono pomiary temperatury zimnych atomów w funkcji natężenia I_{pump} wąska pompującej, w praktycznie tych samych warunkach pracy pułapki, w węższym i szerszym zakresie natężen (odpowiednio $I_{\text{pump}} = 80 - 340 \mu W/mm^2$ i $I_{\text{pump}} = 30 - 320 \mu W/mm^2$). Uzyskane zależności przedstawione są na rysunkach 4.10 i 4.11. Poszczególne wyniki obarzione są zaznaczoną na wykresach niedokład-

![Rysunek 4.10: Wykres zależności temperatury spułapkowanych zimnych atomów od natężenia wąska pompującej w konfiguracji 2. dużego kąta θ. Natężenie wąska pułapkującej $I_{\text{trap}} = 41 \mu W/mm^2$, jej odstrojenie od przejścia atomowego $\Delta = -3.12 \Gamma$, natężenie wąska repompującej $I_{\text{repumper}} = 150 \mu W/mm^2$.](image)

nością pomiarową, która została oszacowana w sposób omówiony w paragrafie 4.6. Prezentowane wykresy pokazują, że temperatura pułapki bardzo nieznacznie zależy od mocy wąska pompującej. Zależność ta jest liniowa o współczynniku proporcjonalności wynoszącym zaledwie $0.003 \mu K/\mu W/mm^2$. Oznacza to, że wąska pompująca o typowym stosowanym w pomiarach natężeniu $I_{\text{pump}} = 300 \mu W/mm^2$ i odstrojeniu $\Delta_{\text{pump}} = 2\pi \cdot 140 \text{ MHz}$ zwiększa temperaturę atomów zaledwie o $0.3 \mu K$, co w naszym przypadku jest wartością poniżej niepewności systematycznej związanej ze sposobem przeznajania laserów, tak jak to opisuje paragraf 4.6.2. Aby z takich wyników odzyskać temperaturę niezaburzonej przez pomiar chmury wystarczy do podanych na wykresach wzorów na T podstawić $I_{\text{pump}} = 0$. W ten sposób dla przypadków z rysunku 4.10 i 4.11 dostajemy kolejno $T = 77 \mu W/mm^2$ i $T = 79 \mu W/mm^2$. Tak więc dla podobnych parametrów pułapkowania otrzymujemy bardzo zbliżone wyniki temperatury.

Na obu wykresach widoczne są pewnego rodzaju oscylacje temperatury wokół wartości wynikającej z dopasowania zależności liniowej. Te fluktuacje są szczególnie wyraźne w przypadku szerokiego zakresu badanych natężen. Ten drugi pomiar

4.3.3 Wpływ natężenia wiązek pułapkujących

Jednym z ważnych parametrów pracy pułapki jest natężenie \(I_{\text{trap}} \) wiązek pułapkujących. Zbadano, jak od tego parametru zależy temperatura zimnych atomów. Przeprowadzono dwie serie pomiarowe, dla wąskiego i szerokiego zakresu natężeń (odpowiednio \(I_{\text{trap}} = 15 - 50 \mu W/mm^2 \) oraz \(I_{\text{trap}} = 40 - 250 \mu W/mm^2 \)). Rysunek 4.12 pokazuje dwa przykładowe widma absorpcji. Wyraźnie widać, że ze wzrostem natężenia światła pułapki rośnie również szerokość rezonansów odrzutu, co świadczy o wzroście temperatury i potwierdza stwierdzenie z poprzedniego paragrafu, że podgrzewanie atomów w wyniku emisji spontanicznej jest proporcjonalne do natężenia światła. Gorszy stosunek sygnału do szumu dla natężenia \(I_{\text{trap}} = 15 \mu W/mm^2 \) wynika z faktu, że dla tak małego natężenia wiązek atomy nie są skutecznie pułapkowane i jest ich w obszarze pułapki stosunkowo mało. Wykresy badanej zależności pokazują rysunki 4.13 i 4.14.

Nie istnieje w literaturze model zależności temperatury od natężenia wiązek pułapkujących w trzech wymiarach. Zagadnienie to jest trudne teoretycznie ze względu na skomplikowaną współgrę chłodzenia dopplerowskiego i subdopplerowskiego. W naszym przypadku zależność temperatury od natężenia światła pułapki jest z dobrą dokładnością liniowa w obu zakresach, co pokazuje dopasowana do punktów doświadczalnych prosta. Liniowy wzrost temperatury z natężeniem wiązek pułapkujących zarejestrowali też autorzy prac [65, 66].
Rys. 4.12: Dwa przykładowe widma absorpcji z rezonansami odrzutu dla kąta \(180^\circ - \theta\), zarejestrowane dla dwóch natężeń wiązki pułapkującej \(I_{\text{trap}}\), przy typowym odstrojeniu \(\Delta = -3.12 \Gamma\). Natężenie wiązki pompującej \(I_{\text{pump}} = 335 \mu \text{W/mm}^2\), jej odstrojenie od przejścia atomowego \(\Delta = 23.4 \Gamma\), natężenie wiązki repompującej \(I_{\text{repumper}} = 150 \mu \text{W/mm}^2\), gradient osiowy pola magnetycznego \(\partial_z B = 12.2 \text{ Gauss/cm}\). Pomiar przeprowadzono w typowej konfiguracji prawie przeciwieństwych (tj. tworzących kąt \(180^\circ - \theta\)) wiązek próbkującej i pompującej.

Współczynnik nachylenia tej prostej jest w obu przypadkach nieco inny, pomimo że parametry wiązek pułapkujących i gradientu pola magnetycznego mają bardzo zbliżone wartości. Oznacza to, że chmura zimnych atomów była nieco inaczej wyjustowana, np. w inny sposób (niecentralnie) przecinały się wiązki pułapkujące. Potwierdzeniem tej hipotezy jest fakt, że ze względu na harmonogram badań porównywane serie pomiarowe zmierzone były w odstępie miesiąca. Przez ten czas, w wyniku różnych zmian i przejustowań pułapki, mogła zmienić się geometria wiązek pułapkujących. W paragrafie 4.6.1 wyjaśnimy, że wzajemne wyjustowanie wiązek pułapki i jej pola magnetycznego również wpływają na temperaturę chmury. W takim razie nie można porównywać bezpośrednio współczynników nachylenia prostych z dwóch różnych serii pomiarowych, ale raczej badać ogólny charakter zależności. Nasza metoda pomiaru pozwala stwierdzić, że nawet przy tych samych wartościach parametrów pracy pułapki (natężenie i odstrojenie wiązek, gradient pola magnetycznego), chmura atomowa może mieć inne własności, w szczególności inną temperaturę.

Warto zwrócić uwagę, że dla najniższych natężeń wiązek pułapkujących atomy osiągają temperaturę poniżej granicy dopplerowskiej [67], która dla \(^85\text{Rb}\) wynosi 140 \(\mu \text{K}\).
Rys. 4.13: Wykres temperatury spułapkowanych zimnych atomów w wąskim zakresie natężenia pojedynczej wiązki pułapkującej I_{trap}. Parametry pułapki takie same, jak podano w podpisie do rysunku 4.12.

![Wykres temperatury spułapkowanych zimnych atomów w wąskim zakresie natężenia pojedynczej wiązki pułapkującej I_{trap}.]

\[T[\mu K] = 1.4 I_{\text{trap}}[\mu W/mm^2] + 22[\mu K] \]

Rys. 4.14: Wykres temperatury spułapkowanych zimnych atomów w szerokim zakresie natężenia pojedynczej wiązki pułapkującej I_{trap}. Natężenie wiązki pompującej $I_{\text{pump}} = 100\mu W/mm^2$, pozostałe parametry takie same, jak podano w podpisie do rysunku 4.12.

![Wykres temperatury spułapkowanych zimnych atomów w szerokim zakresie natężenia pojedynczej wiązki pułapkującej I_{trap}.]

\[T[\mu K] = 0.84 I_{\text{trap}}[\mu W/mm^2] + 43[\mu K] \]

Trzeba pamiętać, że w przypadku małego kąta θ niepewność jego wyznaczenia prowadzi do dużej niepewności wyznaczenia temperatury. Jednak ponieważ kąt wyznacza się tylko raz dla całej serii pomiarowej, ten błąd jest taki sam dla każdego punktu w serii, i dlatego nie ma wpływu na współczynnik nachylenia prostej, czyli na ogólny charakter zależności. Prosta metoda eliminacji błędu związanego z pomiarem małego kąta przedstawiona jest w paragrafie 4.6.2.

4.3.4 Wpływ odstrojenia wiązek pułapkujących

Jak napisaliśmy w paragrafie 4.3.2, szybkość podgrzewania atomów przez wiązkę jest odwrotnie proporcjonalna do kwadratu odstrojenia tej wiązki od przejścia atomowego. Trzeba dodatkowo zwrócić uwagę, że ze wzrostem odstrojenia rośnie głębokość potencjału wytworzonego przez siły dipolowe (paragraf 5.2), a więc coraz bardziej znaczący staje się proces chłodzenia subdopplerowskiego (paragraf 5.1, [68]). Kształt zależności pokazanej na rysunku 4.16 wynika z jednoczesnego działania tych dwóch mechanizmów. Dokładna analiza problemu jest trudna ze względu na to, że rejestrowane temperatury należą do zakresu pośredniego pomiędzy chłodzeniem dopplerowskim i subdopplerowskim. Warto zwrócić uwagę, że zmiana odstrojenia Δ pozwala bardzo wydajnie sterować temperaturą próbki atomowej.

3Oprócz prezentowanych tu pomiarów temperatury świadczy o tym opisana w rozdziale 6 obserwacja współistnienia atomów swobodnych i zlokalizowanych w niedyssympatycznej sieci optycznej.
Rys. 4.16: Wykres zależności temperatury spułapkowanych zimnych atomów od odstrojenia Δ wiązek pułapkujących od rezonansowego przejścia pułapkującego $F_g = 3 \rightarrow F_e = 4$. Natężenie wiązki pułapkującej $I_{\text{trap}} = 32 \mu W/mm^2$, natężenie wiązki pompującej $I_{\text{pump}} = 328 \mu W/mm^2$, natężenie wiązki repompującej $I_{\text{repumper}} = 150 \mu W/mm^2$, gradient osiowy pola magnetycznego $\partial_z B = 12.2$ Gauss/cm. Zaznaczona na wykresie krzywa jest opisana wzorem $y = A + \frac{B}{(x - x_0)}$, gdzie $A = -24$, $B = 156$, $x_0 = 1.52$.

4.3.5 Wpływ natężenia wiązek repompujących

Innym parametrem wpływającym na wartość temperatury spułapkowanych atomów jest natężenie wiązek repompujących. Jak pamiętamy z poprzednich paragrafów, silniejsza wiązka częściej wzbudza atomy, które deeksygtyując ulegają podgrzewaniu w wyniku odrzutu związanego z emisją spontaniczną. Spodziewamy się więc wzrostu temperatury próbki atomowej ze wzrostem natężenia wiązki repompującej I_{repumper}. Te przypuszczenia potwierdza wykres 4.17. Dodatkowo dla skrajnie dużych natężen wiązki repompującej dochodzi do nasycenia procesu podgrzewania. Jest to związane z faktem, że dla takich natężeń prawie wszystkie atomy znajdujące się w pułapce są wydajnie repompowane i dalsze zwiększanie mocy lasera nie zwiększa już szybkości rozpraszania fotonów. Należy pamiętać, że laser repompujący jest w ścisłym rezonansie z przejściem $F_g = 2 \rightarrow F_e = 3$, a więc w odróżnieniu od wiązek pułapkujących w tym przypadku nasycenie procesu podgrzewania następuje o wiele wcześniej.
4.3 Wyniki pomiarów temperatury

Rys. 4.17: Wykres zależności temperatury spułapkowanych zimnych atomów od natężenia pojedynczej wiązki repompującej I_{repumper}. Natężenie wiązki pompującej $I_{\text{pump}} = 280 \mu\text{W/mm}^2$, pozostałe parametry podano w podpisie do rysunku 4.12. Zaznaczona na wykresie krzywa nie wynika z konkretnego modelu teoretycznego i została narysowana aby uwidocznić kształt badanej zależności.

4.3.6 Wpływ gradientu pola magnetycznego

Zależność temperatury zimnych atomów od wartości gradientu pola magnetycznego można łatwo zrozumieć jakościowo. Po pierwsze, ze wzrostem tego gradientu wzrasta głębokość pułapki, a więc pułapkowane są coraz cieplejsze atomy. Dodatkowo, ponieważ zwiększa się nachylenie potencjału pułapkującego, objętość pułapki jest mniejsza, a to oznacza, że skraca się średnia droga swobodna atomów. Wzrasta więc częstość zderzeń pomiędzy znajdującymi się w pułapce atomami, co sprawia, że atomy wydajniej termalizują. Częstsze zderzenia mogą prowadzić również do zakłócania procesu chłodzenia subdopplerowskiego, zmniejszając populację atomów o najniższych prędkościach, a więc takich, które są najbardziej podatne na to chłodzenie.

Z tych dwóch przyczyn zwiększanie wartości gradientu powoduje szybszy niż liniowy wzrost temperatury. Badaną zależność przedstawia rysunek 4.18.
4.4 Wyznaczanie rozkładu prędkości

Jak pamiętamy z rozdziału 1 (paragraf 1.2.4), kształt rezonansu odrzutu jest pochodną rozkładu prędkości atomów w kierunku prostopadłym do dwusiecznej kąta pomiędzy wiązką pompującą a próbującą. Zarejestrowany w doświadczeniu sygnał rezonansu odrzutu (4.1) po odjęciu stałego tła y_0 można więc wykorzystać do otrzymania rozkładu prędkości $N(v_\perp)$ przez numeryczne obliczenie całki

$$N(x) = \int_{-\infty}^{x} r(x', y_0 = 0, x_0, A, \xi) \, dx'. \quad (4.5)$$

Ze wzoru (4.5) otrzymuje się rozkład prędkości w zmiennej x będącej odstrojeniem δ wiązki od próbującej od pompującej. Aby otrzymać rozkład $N(v_\perp)$ wyskalowany w prędkościach atomów, należy przeliczyć odstrojenie na prędkość korzystając z zależności wynikającej ze wzoru (1.47)

$$v_\perp = \frac{\delta}{2k \sin(\theta/2)}. \quad (4.6)$$

Ze wzoru (4.6) wynika, że w przypadku prawie przeciwbieżnych wiązek diagnostycznych, częstotliwości 1 MHz odpowiada prędkość atomów $v_\perp = 39 \text{ cm/s}$. Przykładowe rozkłady prędkości atomów w pułapce otrzymane przez scałkowanie sygnału odrzutu zgodnie ze wzorem (4.5) przedstawia rysunek 4.19. Pomiary dokonywane były dla geometrii, gdy wiązka pompująca tworzy duży kąt z próbującą (tj. w konfiguracji 2. z paragrafu 4.2.3). Rysunek 4.19 (a) odpowiada równowadze termodynamicznej w dobrze wyjustowanej pułapce. Widać, że otrzymany
4.4. Wyznaczanie rozkładu prędkości

Rys. 4.19: (a) Sygnał odrzutu zarejestrowany dla dobrze wyjustowanej chmury w sytuacji równowagowej ($I_{\text{trap}} = 31 \, \mu\text{W/mm}^2$, $\Delta = 3.12 \, \Gamma$, $\partial_z B = 12 \, \text{Gauss/cm}$.) Poniżej rozkład prędkości $N(v_{\perp})$ otrzymany z sygnału odrzutu zgodnie ze wzorem (4.5). (b) Analogicznie jak dla (a), sygnał odrzutu i rozkład $N(v_{\perp})$, ale dla nierównowagowego podziału natężenia wiązek pułapkujących. Natężenie w wiązkach rozbijających się wzdłuż kierunku z wynosi $I_z = 550 \, \mu\text{W/mm}^2$ (natężenie na jedną wiązkę w równowadze $I_{\text{trap}} = 230 \, \mu\text{W/mm}^2$, $\Delta = -3.12 \, \Gamma$, $\partial_z B = 12 \, \text{Gauss/cm}$.). W obu przypadkach (a) i (b) otrzymany rozkład $N(v_{\perp})$ jest dobrze opisany funkcją Gaussa, pomimo że dla (b) w pułapce nie panuje równowaga termodynamiczna. Linie przerywane pokazują dopasowane do sygnałów doświadczalnych krzywe teoretyczne. Z ich szerokości została wyznaczona temperatura (w przypadku (b) jest to szerokość rozkładu prędkości przeliczona na temperaturę).

rozkład prędkości jest bardzo dobrze opisany funkcją Gaussa. Na rysunku 4.19 (b) przedstawiono natomiast widmo sygnału odrzutu w sytuacji, gdy para wiązek pułapkujących rozbijających się wzdłuż osi z miała zdecydowanie większe natężenie niż pozostałe pary. Taką konfigurację podziału natężeń wiązek pułapki magnetooptycznej rozważona jest dokładniej w paragrafie 4.5.2, gdzie pokazujemy, że w tych warunkach równowaga termodynamiczna w pułapce nie jest zachowana. Brak równowagi termodynamicznej przejawia się w tym przypadku w zależności szerokości rozkładu prędkości od rozpatrywanego kierunku. Mimo to, otrzymany z widma 4.19 (b) rozkład prędkości $N_{v_{\perp}}$ jest wciąż dobrze opisywany funkcją Gaussa.

Z inną sytuacją mamy do czynienia w przypadku widma przedstawionego na rysunku 4.20, gdzie wiązki pułapkujące były dostrojone bliżej do rezonsansu atomowego ($\Delta = -2.25 \, \Gamma$), niż w typowej sytuacji ($\Delta = -3.12 \, \Gamma$) – optymalnej jeśli chodzi o ilość atomów chmurze. W tym przypadku wpływ ciśnienia promieniowania wiązek pułapkujących na atomy jest znacznie większy (wiązki są bardziej rezonansowe) i wszelkie niedokładności wyjściowości pułapki stają się bardziej istotne. Jak poka-
zuje otrzymany z sygnału odrzutu rozkład prędkości $N(v_{\perp})$, w pułapce nie występuje równowaga termodynamiczna, a więc w odróżnieniu od powyżej dyskutowanych przypadków, rozkład ten nie jest już opisywany funkcją Gaussa.

Rys. 4.20: Sygnał odrzutu i otrzymany z niego rozkład prędkości $N(v_{\perp})$ zarejestrowany przy małym odstrojeniu wiązek pułapkujących od rezonansu atomowego $\Delta = -2.25 \Gamma$ ($I_{\text{trap}} = 31 \mu \text{W/mm}^2$, $\partial_z B = 12 \text{ Gauss/cm}$). Przy tak małym odstrojeniu siły pochodzące od ciśnienia promieniowania są duże i pułapka jest podatna na wszelkie niedokładności justowania i niezrównoważenie wiązek. Jej niestabilność przekłada się na brak równowagi termodynamicznej. Rozkład prędkości $N(v_{\perp})$ nie jest już opisywany funkcją Gaussa, co wyraźnie widać przez jego porównanie z krzywą Gaussa, oznaczoną przerywaną linią. Jej szerokość wyznaczono z położenia ekstremów sygnału odrzutu.

Powyższe wnioski, które wynikają z obserwacji spektroskopowych, znajdują swoje potwierdzenie w monitorowanym kamerą CCD zachowaniu chmur. W przypadku, gdy dla optymalnego dla pułapki odstrojenia jedyny mechanizm zakłócający równowagę termodynamiczną w chmurze jest związany z nierównowagowym podziałem natężeń wiązek pułapkujących, pułapka pozostaje stabilna, a jej ekspansja zachowuje symetryczny charakter. Natomiast dla mniejszych odstrożeń od rezonansu atomowego pułapka staje się niestabilna – obserwuje się jej fluktuacje, zmiany kształtu i rozmiaru. Również jej ekspansja przestaje być izotropowa.

Otrzymywanie rozkładów prędkości $N(v_{\perp})$ przez całkowanie sygnału odrzutu jest bardzo interesujące. Wielką zaletą tej metody jest to, że działa ona również w warunkach braku równowagi termodynamicznej, kiedy krzywe opisujące $N(v_{\perp})$ mogą przybierać postać daleką od funkcji Gaussa, tak jak pokazuje to rysunek 4.20.

Przy całkowaniu sygnału odrzutu należy zwracać dużą uwagę na bardzo dokładne wyzerowanie (odjęcie) tła, na którym rejestrowana jest absorpcja wiązki próbkią-
4.5 Rozkład prędkości w różnych kierunkach

Dzięki temu, że sygnał rezonansów odrzutu jest pochodną rozkładu prędkości atomów w kierunku prostopadłym do dwusiecznej kąta pomiędzy wiązką pompującą i próbkującą, zmiana geometrii rozchodzenia się tych wiązek prowadzi do próbkowania rozkładu prędkości w różnych kierunkach. W szczególności zastosowanie opisanej w paragrafie 4.2.3 konfiguracji 4., w której wiązka próbkująca dwukrotnie przechodzi przez ośrodek atomowy (rysunek 4.5 (d)), prowadzi do rejestracji w widmie absorpcji jednocześnie wąskiego i szerokiego rezonansu odrzutu. Kształt tych rezonansów związany jest z rozkładem prędkości zimnych atomów w dwóch prostopadłych kierunkach. Poniżej omówimy takie pomiary przeprowadzone dla atomów znajdujących się w pułapce magnetooptycznej.

4.5.1 Badanie rozkładu prędkości spułapkowanych atomów

Pierwszy przeprowadzony eksperyment dotyczył atomów pułapkowanych w typowy sposób, to znaczy przy jednakowych natężeniach wszystkich wiązek pułapkujących. Spodziewamy się, że w takim przypadku rozkład prędkości atomów jest izotropowy. Aby zbadać ewentualne odstępstwa od równowagowego rozkładu prędkości, który z definicji posiada tę samą szerokość w dowolnym kierunku, zarejestrowano serię pomiarową w konfiguracji 4. z odbitą wiązką próbującą, przy stopniowo zwiększonym natężeniu wiązek pułapkujących I_{trap}. Do zmierzonych widm dopasowano zależność teoretyczną $g_{\text{RR}}(x, y, x_0, A_1, \xi_1, x_0, A_2, \xi_2)$ daną wzorem (4.4) opisującym złożenie dwóch rezonansów odrzutu o szerokościach ξ_1 i ξ_2, amplitudach A_1 i A_2, zerujących się odpowiednio dla x_0 i x_0. Wykres 4.21 przedstawia zależność temperatury atomów wyznaczanej z szerokości obu rezonansów odrzutu dla kąta $\theta = 5^\circ$ i $180^\circ - \theta$. Uzyskane wartości są bardzo zbliżone i jednakowo zależą od natężenia I_{trap}. Potwierdza to, że w dobrze wyjustowanej pułapce magnetooptycznej mamy do czynienia z równowagą termodynamiczną i że warunki w niej panujące można charakteryzować używając pojęcia temperatury.

Przykładowe widmo pochodzące z omówionej powyżej serii doświadczalnej wraz z dopasowaną do niego zależnością teoretyczną (4.4) prezentujemy na rysunku 4.22. Pokazaliśmy powyżej, że temperatury wyznaczone z szerokości obu składowych widm, wąskiej i szerokiej, (a więc i szerokości rozkładu prędkości w dwóch kierunkach) są jednakowe. Natomiast uwagę zwraca fakt, że wartości x_0 i x_0, czyli współrzędne
Rys. 4.21: Zależność temperatury spułapkowanych zimnych atomów wyznaczonej z szerokości widma odrzutu mierzonego dla kąta 5° i 175° pomiędzy wiązkami od natężenia wiązki pułapkującej I_{trap}. Odstrojenie wiązek pułapkujących od rezonansu $\Delta = -3.13 \Gamma$, natężenie wiązki pompującej $I_{\text{pump}} = 270 \mu\text{W/mm}^2$, natężenie wiązki repompującej $I_{\text{repumper}} = 150 \mu\text{W/mm}^2$, gradient osiowy pola magnetycznego $\partial_z B = 12.2 \text{ Gauss/cm}$.

Rys. 4.22: Przykładowe widmo odrzutu zmierzone w serii pomiarowej prezentowanej na poprzednim rysunku przy natężeniu wiązki pułapkującej wynoszącym $I_{\text{trap}} = 138 \mu\text{W/mm}^2$.

środku symetrii tych składowych, są różne. Ponieważ rezonans odrzutu jest pochodną rozkładu prędkości, wartość odstrojenia x_0, odpowiada najbardziej prawdopodobnej prędkości atomów. Oznacza to, że prezentowane widma odpowiadają sytuacji, w której rozkład prędkości atomów w dwóch badanych kierunkach ma tę samą szerokość, ale w kierunku propagacji wiązek diagnostycznych atomy mają różnicę od zera składową prędkości najbardziej prawdopodobnej. Istnieje więc jakiś mechanizm, który powoduje, że w dwóch próbkowanych kierunkach prędkości atomów nie są jednakowe, mimo zachowania tej samej szerokości rozkładu.
Niezerowa składowa najbardziej prawdopodobnej prędkości może wynikać z przyspieszania atomów przez wiązkę pompującą. Aby to zbadać, przeprowadziliśmy pomiary widm odrzutu, w której zmieniano było natężenie tej wiązki (w konfiguracji z odbitą wiązką próbującą). Spodziewany się, że względne przesunięcie $\Delta x_0 = x_{02} - x_{01}$ powinno wzrastać wraz z mocą pompy. Na rysunku 4.23 prezentujemy wyniki uzyskane w dwóch seriach pomiarowych: przy zwiększaniu natężenia pompy i następnie jego zmniejszaniu. W granicy błędu pomiarowego reglowane przesunięcie Δx_0 widm odrzutu względem siebie jest stałe. Również temperatura wyznaczona z szerokości widm zmierzonych w tej serii nie zmienia się. Przeczuć to możliwości przyspieszenia atomów przez wiązkę pompującą, co jest zgodne z wcześniejszymi wnioskami z paragrafu 4.3.2 o jej zaniedbywalnym wpływie na atomy. Wzajemne przesunięcie środków symetrii szerokiego i wąskiego rezonansu odrzutu musi zatem wynikać z innych przyczyn.

Jak pamiętamy z rozdziału 2, trzy pary przeciwbieżnych wiązek pułapkujących otrzymuje się wprowadzając do pułapki trzy prostopadle do siebie wiązki, które po przejściu przez obszar pułapki są odbijane przez lustra. Wiązki powracające są słabsze, ponieważ przed ponownym oddziaływaniem z atomami przechodzą dwukrotnie przez (niepokrytą antyrefleksyjnie) szklaną ściankę komory próżniowej i dodatkowo są nieco osłabiane przez odbicie od niedoskonałego lustra. Można oszacować, że w naszych warunkach eksperymentalnych osłabienie wiązek powracających względem padających wynosi 15%. Taki efekt można kompensować przez lekkie zogniskowanie wiązek. Wtedy pomimo osłabienia wiązka powracająca ma w obszarze pułapki tę samą gęstość mocy co padająca i nie ma nierównowagi ciśnienia promieniowania. Ponieważ ze względu na konstrukcję układu optycznego każda z odbitych wiązek przebywa inną drogę przed wejściem do pułapki, wymagałoby to zastosowania trzech niezależnych teleskopów ogniskujących i precyzyjnego ustawienia odpowiednich parametrów pułapki.

Rys. 4.23: Przesunięcie Δx_0 widm odrzutu mierzonych jednocześnie dla małego i dużego kąta dla różnych natężeń wiązki pompującej I_{pump}. Natężenie wiązek pułapkujących $I_{\text{trap}} = 121 \mu W/mm^2$, ich odstrojenie $\Delta = -3.13 \Gamma$, pozostałe parametry takie same, jak w podpisie do rysunku 4.21.

\[\Delta x_0 = x_{02} - x_{01} \]

\[I_{\text{pump}} [\mu W/mm^2] \]

\[\Delta x_0 \text{ [kHz]} \]

\[\text{moc pompy małą} \]

\[\text{moc pompy rożne} \]
niej zbieżności wiązki za nimi (ogniskowe rzędu paru metrów). W obecnym układzie pułapki takie rozwiązanie nie było stosowane. Mamy więc do czynienia z pewną nierównowagą ciśnienia promieniowania w pułapce, które może powodować wspomniane przesunięcie rozkładów prędkości względem siebie.

Aby potwierdzić tę hipotezę, zarejestrowaliśmy widma absorpcji, dodatkowo osłabiając filtrami neutralnymi wiązkę powracającą tworzącą z próbką mały kąt. Uzyskane w ten sposób wyniki prezentujemy na wykresach 4.24 i 4.25. Ponownie (mimo zmiany osłabienia) nie ulega zmianie szerokość rozkładu prędkości w dwóch kierunkach, ale widma im odpowiadające przesunięte są względem siebie o coraz większą wartość Δx_0 dla coraz mocniejszych filtrów. Potwierdza to niezaniechytwalny wpływ nierównowagi natężen wiązek pułapkujących na rozkład prędkości w ich kierunku.

O dużej czułości prezentowanej tu metody diagnostycznej świadczy następujące oszacowanie. Temperatura odpowiadająca prezentowanym w tym paragrafie widmom odpowiada średniej prędkości atomów około 10.5 cm/s. Natomiast przesunięcie $\Delta x_0 = x_{02} - x_{01}$ rezonansów odrzutu względem siebie można korzystając ze wzoru (4.6) przeliczyć na różnicę składowych prędkości w dwóch kierunkach, otrzymując $\Delta v \approx 2.5$ cm/s.

4.5.2 Badanie anizotropii w pułapce przy nierównowadze ciśnienia światła

W poprzednim paragrafie zaprezentowaliśmy wyniki doświadczalne potwierdzające możliwość jednoczesnego badania rozkładu prędkości atomów w dwóch kierunkach. W omawianej sytuacji mieliśmy do czynienia z rozkładem o jednakowej szerokości (a więc tej samej prędkości średniej, co dawało możliwość zdefiniowania temperatury), ale wycentrowanych na innej wartości (najbardziej prawdopodobna składowa prędkości w kierunku próbkowania rozkładu była różna od zera). Ze względu na sposób doprowadzenia wiązek do pułapki takie przesunięcie występuje w naszej pułapce magnetooptycznej nawet w typowych warunkach pracy. Aby sprawdzić, czy zaproponowana metoda wykrywa również różnice w wartościach szerokości rozkładu prędkości atomów, wytworzyliśmy w pułapce sytuację nierównowagową. Stopniowo zwiększane było natężenie I_z w parze wiązek prawie równoległej do pompy i próbki, kosztem pozostałych dwóch par. Szerokości rozkładu prędkości w dwóch kierunkach (wzdłuż i prostopadle do kierunku rozchodzenia się wiązek diagnostycznych), przeliczone na wielkość τ o wymiarze temperatury i podane na wykresie 4.26 jasno pokazują, że w takiej sytuacji w pułapce nie ma równowagi termodynamicznej. Gdy natężenie wyróżnionej pary wiązek staje się większe od natężenia równowagowego, obserwujemy systematyczne zwężanie rozkładu prędkości w kierunku propagacji tych wiązek. Jednocześnie rośnie szerokość rozkładu prędkości w kierunku poprzecznym. Zachowanie to wydaje się być sprzeczne z intuicją, która podpowiada, że wzrost natężenia wiązek powoduje podgrzewanie próbki atomowej w kierunku ich propagacji.

Zmniejszenie szerokości rozkładu prędkości atomów w pułapce magnetooptycznej wraz ze wzrostem natężenia wiązek w rozpatrywanym kierunku zostało teoretycznie przewidziane w pracy [69]. Rozważono tam pełną, trójwymiarową konfigurację pułapki magnetooptycznej wykorzystującej przejście atomowe $F_y = 0 \rightarrow F_e = 1$.

5 Większość prac dotyczących teorii pułapki magnetooptycznej rozpatruje przypadek jednowymiarowy.
4.5. Rozkład prędkości w różnych kierunkach

Rys. 4.24: Zależność temperatury spułapkowanych zimnych atomów wyznaczonej z szerokości widma odrzutu mierzonego dla kąta 5° i 175° pomiędzy wiązkami od względnej różnicy natężeń wiązek pułapkujących rochodzących się przeciwbieżnie $\Delta I / I = (I_{+z} - I_{-z}) / I_{+z}$, gdzie $I_{\pm z}$ oznacza natężenie wiązki pułapkującej rochodzącej się w kierunku odpowiednio $\pm z$. Natężenie padającej wiązki pułapkującej $I_{\text{trap}} = 80 \mu \text{W/mm}^2$, natężenie wiązki pompującej $I_{\text{pump}} = 326 \mu \text{W/mm}^2$, pozostałe parametry takie same, jak w podpisie do rysunku 4.21.

Rys. 4.25: Zależność przesunięcia Δx_0 widm odrzutu mierzonych jednocześnie dla kąta 5° i 175° pomiędzy wiązkami od względnej różnicy natężeń wiązek pułapkujących rochodzących się przeciwbieżnie $\Delta I / I$. Natężenie padającej wiązki pułapkującej $I_{\text{trap}} = 80 \mu \text{W/mm}^2$, natężenie wiązki pompującej $I_{\text{pump}} = 326 \mu \text{W/mm}^2$, pozostałe parametry takie same, jak w podpisie do rysunku 4.21.
Rys. 4.26: Szerokość rozkładu prędkości atomów w kierunku równoległym (τ_\parallel) i prostopadłym (τ_\perp) do wiązek diagnostycznych w zależności od natężenia I_z pary wiązek prawie równoległych do kierunku propagacji pompy i próbki, zwiększamego kosztem pozostałych wiązek pułapkujących. Natężenie równowagowe wiązek pułapkujących $I_{\text{trap}} = 68 \, \mu\text{W/mm}^2$, natężenie wiązki pompującej $I_{\text{pump}} = 326 \, \mu\text{W/mm}^2$, pozostałe warunki takie same, jak w podpisie do rysunku 4.21.

Dodatkowo uwzględniono możliwość zwiększenia natężenia pary wiązek pułapkujących rozchodzących się wzdłuż osi cewek pola magnetycznego przy zachowanym stałym natężeniu pozostałych pary. W efekcie otrzymuje się, podobnie jak w naszym przypadku, zmniejszenie szerokości rozkładu prędkości atomów w wyróżnionym kierunku i jej zwiększenie w kierunkach prostopadłych. Modyfikacja wzorów z pracy [69] tak, aby uwzględniały one rzeczywiste warunki naszego doświadczenia (zwiększanie mocy jednej pary wiązek kosztem pozostałych i inny układ pola magnetycznego) [70], wykazała, że szerokości rozkładów prędkości wzdłuż biegnienia się wyróżnionej pary wiązek pułapkujących i prostopadle do niego wyrażają się następująco:

$$
\tau_\parallel = \alpha + \beta \frac{1 - \kappa}{\kappa}, \quad (4.7)
$$

$$
\tau_\perp = \alpha + \beta \frac{1 + \kappa}{1 - \kappa}, \quad (4.8)
$$

gdzie κ oznacza stosunek natężenia wyróżnionych wiązek do całkowitego natężenia światła pułapkującego (w równowadze $\kappa = 1/3$). Wielkości α i β parametryzują współczynniki dyfuzji:

$$
D_i = D_0 (\alpha I_i + \beta (I_j + I_k)), \quad (4.9)
$$

zależne od natężenia odpowiednich par wiązek pułapkujących, gdzie $\{i, j, k\} \in \{x, y, z\}$ a D_0 jest współczynnikiem dyfuzji przy równowagowym podziale natężeń.

Przypomnijmy, że gradient pola magnetycznego w kierunku obs. cewek jest dwukrotnie większy niż w kierunkach poprzecznych.
Porównanie wykresów sporządzonych w oparciu o te wzory (dla parametrów \(\alpha = 0.938, \beta = 0.031 \)) z danymi eksperymentalnymi przedstawia rysunek 4.27. Wyniki teoretyczne odtwarzają jakościowo zachowanie rozkładów prędkości obser-

Rys. 4.27: Wyznaczona doświadczalnie szerokość rozkładu prędkości atomów w kierunku równoległym (\(\tau_{||} \)) i prostopadłym (\(\tau_{\perp} \)) do wiązec diagnostycznych z rysunku 4.26 w zależności od parametru \(\kappa \) opisującego nierównowagę natężeń wiązek pułapkujących oraz dopasowane zależności teoretyczne 4.7 i 4.8.

wowe w omawianym tu przypadku eksperymentalnym, ale zgodność ta nie jest dobra, szczególnie w przypadku kierunku \(\parallel \). Wynika to z faktu, że model oparty o przejściu \(F_g = 0 \rightarrow F_e = 1 \) zaniedbuje niezwykle istotny przy osiąganych w naszej pułapce temperaturach (paragraf 4.3.3) mechanizm chłodzenia subdopplerowskiego [68]. Ten mechanizm stanowi istotny przyczyną odpowiedzialny za zmniejszanie szerokości \(\tau_{||} \) ze wzrostem \(I_z \). Wraz ze wzrostem natężenia wybranej pary wiązek i jednoczesnym osłabianiem pozostałych zbliżamy się do modelowej sytuacji jednowymiarowego chłodzenia subdopplerowskiego w konfiguracji \(\sigma^+ - \sigma^- \) [68]. W takim razie w tym kierunku atomy są coraz wydajniej chłodzone, co jest zgodne z ogólnym charakterem zależności \(\tau_{||}(\kappa) \) z wykresu 4.27. Pełna analiza teoretyczna rozkładu prędkości atomów w pułapce musi więc uwzględniać współdziałanie procesów omówionych w pracy [69] i chłodzenia subdopplerowskiego.

Prezentowane w tym paragrafie wyniki doświadczalne potwierdzają uniwersalność zaproponowanej metody pomiaru temperatury, która w tym konkretnym przypadku pozwoliła zaobserwować anizotropię rozkładu prędkości atomów w pułapce magnetooptycznej z nierównowagowym podziałem natężeń wiązek pułapkujących. Dokładność tej metody jest wystarczająca do rejestracji subtelnego, efektów pochodzących od współdziałania różnych mechanizmów chłodzenia.
4.6 Dyskusja niepewności pomiarowej

Metoda pomiaru temperatury pułapki magnetooptycznej oparta na rezonansach odrzutu ma szereg zalet. Jedną z nich jest wysoka powtarzalność i dokładność. Niemniej jednak, wykresy z paragrafu 4.3 przedstawiające zależności temperatury chmury zimnych atomów od różnych parametrów pułapki wykazują pewien rozrzut punktów doświadczalnych. W niniejszym paragrafie zidentyfikujemy potencjalne źródła niepewności i przyczyny błędów w wyznaczaniu temperatury. Pokażemy, że źródło niedokładności tkwi raczej w konkretnej realizacji eksperymentalnej metody RIR, niż w samej metodzie.

4.6.1 Pułapka magnetooptyczna jako źródło niepewności

Rozpatrując dokładność pomiaru temperatury pułapki magnetooptycznej warto zwrócić uwagę na fakt, że sam mierzony obiekt, czyli chmura zimnych atomów, może być przyczyną względnie dużego rozrzutu punktów doświadczalnych. Równowaga termodynamiczna, jaka ustala się w zimnej chmurze atomowej, jest wynikiem działania kilku czynników. Przede wszystkim silnie zależy ona od parametrów wiązek pułapkujących i repompujących, między innymi od ich częstotliwości. O ile częstotliwość lasera pułapkującego jest aktywnie stabilizowana w układzie spektroskopii nasyconowej [19, 48, 52] to częstotliwość lasera repompującego jest ustalana jedynie przez dobór i stabilizację odpowiedniej temperatury i natężenia prądu diody. Jest to więc stabilizacja bierna, bez układu sprzężenia zwrotnego śledzącego zmiany częstotliwości lasera. Wystarcza to, by zapewnić długofalowe, wydajne pułapkowanie. Jednak brak aktywnej stabilizacji częstotliwości dopuszcza jej fluktuacje, głównie długofalowe, które sprawiają, że w sposób niekontrolowany może zmieniać się temperatura w pułapce. Metoda pomiaru temperatury wykorzystująca rezonanse odrzutu jest na tyle dokładna, że te fluktuacje temperatury są widoczne, szczególnie w dłuższych seriach pomiarowych (np. seria z rysunku 4.11). Tezę o długofalowym wpływie dryfu częstotliwości lasera repompującego na temperaturę atomów w pułapce potwierdza fakt, że temperatura otrzymana z dwóch widm zarejestrowanych jedno po drugim przy tych samych parametrach pracy pułapki jest, w granicy błędu pomiarowego, taka sama. Dla poprawy dokładności dalszych badań, należałoby wprowadzić aktywną stabilizację lasera repompującego.

Kolejnym parametrem wiązek laserowych odpowiedzialnym za wartość temperatury jest ich natężenie. W naszym eksperymentie nie jest ono aktywnie stabilizowane, jednak jego zmiana związana z przypadkowymi fluktuacjami bardzo dobrze stabilizowanego prądu zasilającego lasery jest niewielka i może być pominięta. O wiele większy wpływ na zmianę temperatury pod wpływem zmiany natężenia światła pułapkującego i repompującego ma wyjustowanie toru optycznego wiązek laserowych. Jeśli to wyjustowanie nie jest idealne i wiązki pułapujące nie przecinają się centralnie, natężenie wypadkowe jakiemu poddane są atomy jest mniejsze od wartości zmierzonych (pomiaru natężenia dokonujemy bowiem zawsze w maksimum jego rozkładu). Ten efekt występuje również wtedy, gdy wiązki przecinają się centralnie, ale zero pola magnetycznego wypadła poza obszarem przecięcia się maksimów rozkładu natężenia.

Dodatkowo, szczególnie gdy wiązki pułapujące są prawie idealnie przeciwieżne, otrzymuje się w obszarze pułapki makroskopowy wzór interferencyjny. Wszelkie wibracje elementów mechanicznych sprawiają, że ten wzór fluktuje. W takim razie
4.6. Dyskusja niepewności pomiarowej

fluktuje również wypadkowe natężenie światła, z którym oddziałują atomy. Te fluktuacje mają charakter przypadkowy i krótkotrwały i dlatego nie powinny zasadniczo wpływować na temperaturę – atomy podczas trwania każdego pomiaru widzą pole o uśrednionym po tych fluktuacjach natężeniu. Jednak podczas przeprowadzania pomiarów występują okresy większej lub mniejszej stabilności układu, co wynika np. z różnego nasilenia zaburzeń akustycznych w tym czasie. W takim przypadku średnie natężenie dla różnych pomiarów może być inne, co daje różne wyniki temperatury dla pozornie tych samych warunków doświadczalnych.

Jeszcze innym czynnikiem zmieniającym temperaturę są zderzenia z gorącymi atomami tła, z którego ładowana jest pułapka. Ciśnienie tego tła zależy od wartości prądu, jaki przepływa przez dyspenser z atomami rubidu. To ciśnienie ustala się w wyniku dynamicznej równowagi pomiędzy prędkością napełniania komory próżniowej przez pary rubidu a prędkością jej odpompowywania przez pompę jonową i adsorpcję przez ściany komory. Jak każda równowaga dynamiczna, tak i ta może okresowo fluktuować i przechodzić przez stany nieustalone do stanów równowagowych. Pojawiające się zaburzenia tej równowagi mogą również zmieniać temperaturę naszej próbki atomowej.

Z powyższych rozważań wynika, że chmura atomowa jest układem bardzo czulym na wszelkie zmiany parametrów związanych z pułapkowaniem. Ich fluktuacje przekładają się na rozrzut punktów eksperymentalnych. Widać teraz, że rozrzut ten nie świadczy o niedokładności pomiaru temperatury metodą RIR, a wręcz przeciwnie – pokazuje jej wysoką czułość na stosunkowo niewielkie zmiany warunków, w jakich pułapkowane są atomy. O powtarzalności i dokładności metody świadczy również zbieżność wyników otrzymywanych w następujących po sobie pomiarach dla tych samych parametrów pułapki. Wszystkie pomiary prezentowane w tej pracy były prowadzone tak, aby jak najlepiej spełnić te warunki.

4.6.2 Oszacowanie niepewności systematycznej

Temperatura zimnej próbki atomowej otrzymywana jest przez dopasowanie zależności (4.1) do sygnału absorpcji zawierającego rezonans odrzutu. Z takiego dopasowania otrzymujemy międy innymi parametr \(\xi \), proporcjonalny do szerokości sygnału w zdefiniowanej jako odległość pomiędzy maksimum a minimum. Temperaturę obliczamy korzystając ze wzoru (4.3). Dokładność wyznaczenia temperatury zależy więc od dokładności wyznaczenia kąta \(\theta \) i szerokości \(\xi \). Licząc błąd maksymalny \(\Delta T \) metodą różniczki zupełnej otrzymujemy

\[
\Delta T = 2T \sqrt{\left(\frac{\Delta \xi}{\xi} \right)^2 + \left(\frac{\Delta \theta}{2 \tan \frac{\theta}{2}} \right)^2},
\]

gdzie \(\Delta \xi \), \(\Delta \theta \) są niepewnościami związanymi odpowiednio z wyznaczeniem przeskalowanej szerokości \(\xi \) i kąta \(\theta \).

Niepewność wyznaczenia częstości

Niepewność \(\Delta \xi \) zawiera w sobie dwa przyczynki. Pierwszy z nich wynika z dopasowania funkcji (4.1) do doświadczalnego sygnału absorpcji. Oznaczmy go jako \(\Delta \xi_{fit} \).
Funkcja (4.1) zakłada termiczny, równowagowy rozkład prędkości. Wszelkie odstępstwa od tego rozkładu wpływają na zwiększenie wartości $\Delta \xi_{fit}$. To samo dotyczy sygnałów z niekorzystnym stosunkiem sygnału do szumu. Wartość $\Delta \xi_{fit}$ otrzymywana jest bezpośrednio jako odchylenie standardowe parametru ξ w procedurze dopasowania krzywej (4.1) do danych doświadczalnych.

Drugi przyczynek do $\Delta \xi$, oznaczony $\Delta \xi_{freq}$, pochodzi z niepewności określenia odstrzenia δ. W paragrafie 4.3.1 opisaliśmy metodę kalibracji osi częstotliwości i pokazaliśmy, że z bardzo dobrym przybliżeniem przestrajanie wiązki próbującej jest liniowe. Liniowość tego przestrajania została sprawdzona przez odjęcie sygnału γ przestrajającego laser próbujący uśrednionego po całkowitym czasie trwania serii pomiarowej od dopasowanej do niego zależności liniowej. Wynik tego odejmowania przedstawiono na rysunku 4.28. Widać wyraźnie, że przestrajanie nie jest idealnie liniowe. Gdyby tak było, w wyniku odejmowania dostaliśmy biały szum oscylujący wokół wartości zerowej. Miarą odstępstwa od liniowego przestrajania, a więc również niepewności związanej z osią częstotliwości $\Delta \xi_{freq}$ jest odchylenie standardowe punktów z wykresu 4.28 od średniej wartości zero.

Rys. 4.28: Wykres odchylenia przestrajania lasera próbującego od zależności liniowej. Odchylenie standardowe zbioru punktów przedstawionych na wykresie od wartości średniej zero wynosi $\Delta \xi_{freq} = 3$ kHz. Laser przestrajany był w granicach od -1.1 MHz do 1.1 MHz.

Rozważmy odchylenie standardowe zbioru punktów przedstawionych na wykresie 4.28 od średniej wartości zero:

$$\Delta \xi_{freq} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} y_i^2},$$

(4.11)

gdzie n oznacza liczbę punktów na wykresie (w tym przypadku $n = 5000$). Ostatecznie, sumaryczną niepewność wyznaczenia ξ zapisujemy jako

$$\Delta \xi = \sqrt{\Delta \xi_{fit}^2 + \Delta \xi_{freq}^2},$$

(4.12)

Niepewność ta nie uwzględnia przyczynków związanych z odpowiedzią na sygnał sterujący układu opartego na VCO, przestrajającego laser próbujący. Ten układ

7Liniowy przebieg trójkątny z generatora funkcyjnego Agilent 33120A podany na wejście sterownika VCO modulatora akustooptycznego.
jest sterowany sumą napięcia ze źródła referencyjnego i sygnału z generatora i nie jest aktywnie stabilizowany częstotliwościowo. Może więc dochodzić do długoterminowego, powolnego dryfu częstotliwości. Dryf ten, co sprawdzono eksperymentalnie, jest na tyle wolny, że może zostać całkowicie pominięty w szacowaniu niepewności systematycznej.

Warto zwrócić uwagę na fakt, że przyczynek $\Delta\xi_{\text{fit}}$ może być potraktowany jako niepewność pochodząca od pułapki magnetooptycznej. To od jej jakości i własności zależy jakość dopasowania modelu teoretycznego do uzyskanego w doświadczeniu sygnału. W tym sensie nie mamy kontroli nad niepewnością $\Delta\xi_{\text{fit}}$ – możemy ją zmniejszać tylko przez bardzo dokładne, symetryczne wyjustowanie pułapki (równe podział wiązek, kompensacja osłabienia powracających wiązek pułapkujących, kompensacja pola magnetycznego ziemskiego itp.). Te zabiegi pomagają nie tylko osiągnąć stabilną chmurę o optymalnej gęstości również dla skrajnych wartości parametrów pułapkujących, ale zmniejszają potencjalny efekt anizotropii rozkładu prędkości, omówiony w paragrafie 4.5.

Z kolei przyczynek $\Delta\xi_{\text{freq}}$ może być radykalnie zmniejszony przez zastosowanie lepszego układu przestrajania lasera próbkującego. Najlepszym rozwiązaniem było by zastosowanie układu przestrajania opartego na VCO programowalnym syntetyzery. Syntetyzer, w odróżnieniu od VCO, w każdej chwili czasu generuje sygnał o bardzo dobrze określonej częstotliwości. Pozwala to rozwiązać problem sterowania napięciem i liniowością przebiegu napięciowego. Jeszcze korzystniejsze było by użycie dwóch syntetyzerów: jednego do regulacji częstotliwości wiązki pompującej, drugiego do przestrajania wiązki próbującej. Syntetyzery te można zsynchronizować do jednej referencji częstotliwości, eliminując tym samym niepożądane fluktuacje fazy pomiędzy sprzężonymi wiązkami próbkująco-pompującymi. Dodatkowo taki układ umożliwia precyzyjne wyznaczenie zerowego odstojenia δ wiązki pompującej od próbkującej. W obecnej konfiguracji dokładne wyznaczenie zera jest trudne i wymaga np. wykorzystania sygnału dudnień wiązki pompującej i próbującej, jak opisano w pracy [20]. Należy przy tym zaznaczyć, że znajomość zerowego odstojenia nie jest istotna dla pomiarów temperatury, gdyż zależy ona od szerokości rejestrowanego widma a nie od jego położenia.

Niepewność wyznaczenia kąta

Zgodnie ze wzorem (4.10), względna niepewność wyznaczenia temperatury związana z niepewnością wyznaczenia kąta jest dana wzorem

$$\frac{\Delta T}{T} = \frac{\Delta \theta}{\tan \frac{\theta}{2}}. \quad (4.13)$$

Zakładając, że $\Delta \theta = 0.5^\circ$ i że kąt pomiędzy kierunkiem wiązki próbkującej i pompą wynosi 5°, otrzymujemy dla konfiguracji prawie współbieżnych wiązek pułapkujących i próbujących

$$\frac{\Delta T}{T} \bigg|_{\theta=5^\circ} \approx 20\%, \quad (4.14)$$

podczas gdy dla konfiguracji prawie przeciwbieżnych wiązek mamy

$$\frac{\Delta T}{T} \bigg|_{\theta=180^\circ-5^\circ} \approx 0.04\%. \quad (4.15)$$
O ile niedokładna znajomość kąta w pierwszym przypadku generuje bardzo duży błąd, o tyle dla konfiguracji prawie przeciwbieżnej nie odgrywa większego znaczenia. Pokazuje to przewagę tej drugiej konfiguracji, gdzie znajomość kąta nie jest konieczna (wystarczy, by był odpowiednio bliski 180°), przez co temperatura wyznaczana jest w oparciu o jeden wolny parametr ξ. Należy jednak podkreślić, że błąd względny dany równaniem (4.13) dla małych kątów da się w sposób prosty znacznie zmniejszyć a nawet wyeliminować w przypadku równowagi termodynamicznej. Otóż wystarczy zarejestrować jednocześnie sygnał RIR dla prawie przeciwbieżnej i prawie współbieżnej konfiguracji wiązkek próbczącej i pompującej (jak pamiętamy, można to zrealizować przez odbicie z powrotem pompy albo lepiej próbki). Szerokości takich sygnałów dla małej wartości θ spełniają zależność

\[
\frac{\xi_\theta}{\xi_{180^\circ - \theta}} \approx \frac{\theta}{2}.
\]

W ten sposób uwalniamy się od konieczności pomiaru kąta θ również dla konfiguracji współbieżnej. Nie staje się ona jednak przez to równie dokładna jak pomiar w konfiguracji przeciwbieżnej. Dzieje się tak dlatego, że ze względu na bardzo małą szerokość rezonansu ξ_θ, przy tej samej co w konfiguracji przeciwbieżnej jakości dopasowania, błąd względny Δξ_fit/ξ_fit staje się o wiele większy niż dla kąta 180° − θ.

4.6.3 Wnioski

Z powyższej dyskusji wynika, że dokładność metody pomiaru temperatury metodą rezonansów odrzutu jest ograniczona głównie przez czynnik i aparaturowe. Rozrzut punktów pomiarowych w kolejnych seriach nie wynika z braku powtarzalności metody, lecz z fluktuacji parametrów układu pułapki magnetoopytycznej, a błyski systematyczne można zmniejszyć stosując dokładniejszą metodę przestrajania i zwiększając stosunek sygnału do szumu przez optymalne wyjustowanie układu. Oczywiście, aby metoda dawała rzeczywistą temperaturę schłodzonej próbki atomowej, trzeba przede wszystkim zapewnić, aby diagnostyczne wiązki laserowe nie zaburzały pułapki magnetoopytycznej (paragraf 4.3.2).

4.7 Podsumowanie

Przestawione w tym rozdziale wyniki dotyczące obserwacji rezonansów odrzutu w działającej pułapce magnetoopytycznej ilustrują możliwości doświadczalne wyznaczania rozkładów prędkości w wybranych kierunkach metodami nierezonansowej spektroskopii ramanowskiej. Sygnały odrzutu zarejestrowane zostały w różnych konfiguracjach geometrycznych i dla różnych warunków pracy pułapki. W ten sposób uzyskano informacje o wpływie na temperaturę spułapkowanych atomów takich parametrów jak natężenie i odstrojenie wiązkek pułapkujących, natężenie wiązkek repompujących, gradient pola magnetycznego. Sprawdzono też, że wiązki diagnostyczne indukujące rezonanse odrzutu nie zaburzają w sposób znaczący pracy pułapki. Dodatkowo, zarejestrowano rezonanse odrzutu dla nietandardowej sytuacji nierównowagowego podziału natężeń wiązkek pułapkujących. Wyniki otrzymane w tym przypadku jednoznacznie wskazują na istnienie anizotropii rozkładu prędkości. Jest to pierwsza tego typu obserwacja doświadczalna, możliwa właśnie dzięki wykorzystaniu do pomiaru rezonansów odrzutu, próbujących rozkład prędkości w danym kierunku.
Rozdział 5
Przejścia ramanowskie w sieciach

5.1 Wprowadzenie

Na atom oddziałujący z falą świetlną działają dwie siły: dyssympatyczna i reaktywna, zwana często dipolową. Pierwsza z nich wynika z gradientu fazy fali świetlnej, druga natomiast z gradientu amplitudy pola elektromagnetycznego [68]. Siła dyssympatyczna jest odpowiedzialna za odrzut atomowy i efekty chłodzenia atomów, natomiast siła dipolowa ma charakter potencjalny, czyli jest siłą zachowawczą. Może ona prowadzić do przestrzennej lokalizacji atomów wszędzie tam, gdzie istnieje niezerowy gradient pola \(E \). Sytuacja taka ma miejsce np. w przypadku fali stojącej. Mamy wtedy do czynienia z peroidyczną modulacją pola \(E \), z której wynika regularne rozmieszczenie obszarów, gdzie mogą być lokalizowane wystarczająco zimne atomy. Warunkiem lokalizacji jest potencjał dipolowy wystarczająco głęboki w porównaniu z energią kinetyczną atomu. Inaczej mówiąc, wartość siły dipolowej musi być na tyle duża, by móc zatrzymać i zawrócić atom nadbiegający z prędkością wynikającą z temperatury schłodzonej próbki.

Modelową teorię chłodzenia poniżej temperatur dopplerowskich, które może prowadzić do lokalizacji atomów, rozpatruje się zazwyczaj na przykładzie fali stojącej, powstałej w wyniku nałożenia się dwóch przeciwbieżnych wiązek o ortogonalnych polaryzacjach liniowych [68]. Wypadkowe pole elektryczne jest zmodulowane przestrzennie, przy czym modulacji podlega nie amplituda tego pola, ale jego polaryzacja. Zakładając, że mamy do czynienia z przejściem atomowym \(F_g = 1/2 \rightarrow F_e = 3/2 \), można pokazać, że poruszający się w takim polu atom jest spowalniany w wyniku cyklicznych aktów przepompowania optycznego pomiędzy stanami \(m_g = \pm 1/2 \). Jego energia kinetyczna zamieniana jest na energię potencjalną, a następnie rozproszana w wyniku emisji spontanicznej. Atom przebywając kolejne maksima potencjału dipolowego rozpatrywanej fali stojącej staje się coraz wolniejszy. Jest to tak zwane chłodzenie Syzyfa. Gdy prędkość atomu jest niewystarczająca by pokonać barierę potencjału oddzielającą go od kolejnego minimum, zostaje on uwięziony (zlokalizowany) i zaczyna wykonywać skwantowany ruch oscylacyjny. Atomy zostają więc regularnie rozmieszczone z okresem przestrzennym \(\lambda/4 \). Taka peroidyczna struktura zlokalizowanych, oscylujących atomów przypomina kryształ i nazywana jest siecią optyczną [71]-[73]. W odróżnieniu od zwykłych struktur krystalicznych, których stała sieć jest rządu kilku Å i nie może być zmieniana, w kryształach optycznych osiąga się wartości kilka rzedów wielkości większe. Są one zależne od długości fali i geometrii wiązek laserowych, co daje możliwość zmiany stałej sieci. Ponadto, atomy uwięzione w sieci optycznej nie oddziałują ze sobą, co otwiera możliwości bada-
nia zjawisk przewidzianych dla struktur periodycznych, a będących poza zasięgiem eksperymentalnym w przypadku standardowych kryształów ze względu na silne oddziaływanie węzłów sieci. Te własności sieci optycznych pozwalają na badanie wielu ciekawych zjawisk fizycznych z dziedziny ciała stałego, takich jak oscylacje Blocha, poziomy Wanniera-Starka czy tunelowanie Zenera-Landaua [74]. Istnieją już też gotowe implementacje obliczeń kwantowych z udziałem stanów splątanych [75] kre-owanych w potencjalach dipolowych wytwarzanych przez światło [76].

Powyższy opis dotyczył sytuacji, w której oprócz dyssympatycznego mechanizmu spowalniającego atomy działały siły dipolowe, lokalizujące je. Nie każda konfigu- racja pola wiązek przeciwbieżnych prowadzi do lokalizacji atomów. Jeśli wiązki te mają przeciwnie polaryzacje kołowe (konfiguracja $\sigma^+ - \sigma^-$), dochodzi do przestrzen-nej modulacji kierunku wypadkowego pola E przy jego stałej amplitudzie. W takiej konfiguracji nie ma więc sił dipolowych, ale istnieje bardzo wydajny mechanizm dyssympacji energii, co prowadzi do chłodzenia poniżej tzw. granicy dopplerowskiej, podobnie jak wyżej wspomniany mechanizm Syzyfa. Istnieją wreszcie takie konfigu- racje pól świetlnych, które jedynie lokalizują wystarczającą zimne atomy w minimach potencjału dipolowego, ale ich dodatkowo nie chłodzą.

W pierwszej części tego rozdziału zostanie przedstawiona prosta teoria takiej właśnie nedyssypadtywnej, jednowymiarowej sieci optycznej wytworzonym przez falę stojącą będącą wynikiem interferencji dwóch przeciwbieżnych wiązek o jednakowej polaryzacji. Omówiona teoretycznie sytuacja jest dobrym przybliżeniem ekspery-mentu, w którym do pułapki magnetoopcyjnej wprowadzamy dodatkowe wiązki tworzące falę stojącą. Dla wystarczająco zimnych atomów obserwujemy rezonanse świadczące o ich skwantowanym ruchu, wynikającym z lokalizacji w mikropotencja- lach dipolowych.

Przedstawione w dalszej części rozdziału rachunki pozwalały znaleźć kształt rezo- nansu związanego z przejściami ramanowskimi zachodzącymi pomiędzy poziomami wibracyjnymi atomu zlokalizowanego w potencjałe jednowymiarowej sieci optycznej. Takie widma zarejestrowane doświadczalnie oraz wynik ich modelowania oparty na poniższych rozważaniach przestawione są w następnym rozdziale.

5.2 Jednowymiarowa sieć optyczna

Siły dipolowe w polu fali stojącej

Rozważmy oddziaływanie dwupoziomowego atomu z falą stojącą daną równaniem

$$E(r, t) = \hat{x}E_0(r) \cos(\omega t - \varphi),$$

której faza φ nie zmienia się w przestrzeni. Potencjał oddziaływania dipolowego atom-pole świetlne ma postać

$$V_{\text{int}} = -d \cdot \mathbf{E}(R, t) = -q_e \mathbf{r}_e \cdot \mathbf{E}(R, t),$$

gdzie q_e – ładunek elektronu, \mathbf{r}_e – współrzędna elektronu, \mathbf{R} - współrzędna środka masy atomu. Średnia siła działająca na atom dana jest równaniem

$$\langle F \rangle = \langle - \nabla_R V_{\text{int}} \rangle = \left\langle \sum_{i=x,y,z} d_i \nabla_R E_i(R, t) \right\rangle,$$
przy czym średniowanie $\langle \rangle$ odbywa się po czasie długim w porównaniu z okresem oscylacji fali (5.1), $T = \frac{2\pi}{\omega}$. Średnią wartość operatora momentu dipolowego \hat{d} liczymy ze wzoru

$$\langle \hat{d} \rangle = \text{Tr}(\hat{\rho} \hat{d}), \quad (5.4)$$

w którym $\hat{\rho}$ jest macierzą gęstości atomu dwupoziomowego. Rozwiązanie równania Schrödingera na macierz gęstości [38] daje

$$\langle \hat{d} \rangle = -|d_{ge}| \Omega(R) \frac{\Delta \cos (\omega t - \varphi) - \frac{\Gamma}{2} \sin (\omega t - \varphi)}{\Delta^2 + \left(\frac{\Gamma}{2}\right)^2 + 2\Omega^2(R)}, \quad (5.5)$$

gdzie

$$\Omega(R) = \frac{|d_{ge}| E_0(R)}{\hbar} \quad (5.6)$$

jest częstością Rabiego zależną od położenia R, a $d_{ge} = \langle g | \hat{d} | e \rangle$ oznacza element macierzy operatora momentu dipolowego atomu dwupoziomowego o stanie dolnym $|g\rangle$ i górnym $|e\rangle$. W przypadku słabego zaburzenia, tzn. kiedy $\Omega \ll \Gamma$, $|\Delta|$ wzór (5.5) można przybliżyć wyrażeniem

$$\langle \hat{d} \rangle = -|d_{ge}| \Omega(R) \frac{\Delta \cos (\omega t - \varphi) - \frac{\Gamma}{2} \sin (\omega t - \varphi)}{\Delta^2 + \left(\frac{\Gamma}{2}\right)^2}. \quad (5.7)$$

Podstawiając ten wzór do wyrażenia (5.3) na średnią siłę i wykonując średniowanie po czasie otrzymujemy

$$\langle F \rangle = -\frac{|d_{ge}|}{2} \Omega(R) \Delta \frac{\Delta}{\Delta^2 + \left(\frac{\Gamma}{2}\right)^2} \nabla_R E_0(R)$$

$$= -\frac{\hbar \Delta}{4 \Delta^2 + \left(\frac{\Gamma}{2}\right)^2} \Omega(R) \nabla_R \Omega(R). \quad (5.8)$$

Potencjał dipolowy fali stojącej i sieci optycznej

Jak łatwo sprawdzić, siła $\langle F \rangle$ dana równaniem (5.8) może być policzona jako gradient potencjału

$$U(R) = \frac{1}{8} \frac{\hbar \Delta}{\Delta^2 + \left(\frac{\Gamma}{2}\right)^2} \Omega^2(R). \quad (5.9)$$

Pokazaliśmy w ten sposób, że potencjał $U(R)$ pochodzący od fali stojącej (5.1) jest proporcjonalny do jej natężenia $I(R) \propto \Omega^2(R)$, oraz że zależy od znaku jej odstrojenia Δ. Dla odstrojeń $\Delta < 0$ (ku czerwieni) minima potencjału (5.9) pokrywają się z maksimami natężenia $I(R)$. Z kolei dla odstrojeń $\Delta > 0$ (ku niebieskiemu) minima potencjału (5.9) odpowiadają minimom natężenia $I(R)$.

Zobaczmy teraz, jak wygląda wzór na potencjał dipolowy fali stojącej w konkretnej realizacji eksperymentalnej dwóch przeciwieństw fal płaskich o tej samej polaryzacji liniowej i amplitudzie, o fazach φ_1 i φ_2 stałych w przestrzeni, propagujących się wzdłuż osi z:

$$E_1(r, t) = \hat{x} E_0 \cos (\omega t - k z - \varphi_1),$$

$$E_2(r, t) = \hat{x} E_0 \cos (\omega t + k z - \varphi_2). \quad (5.10)$$

$$E_1(r, t) = \hat{x} E_0 \cos (\omega t - k z - \varphi_1),$$

$$E_2(r, t) = \hat{x} E_0 \cos (\omega t + k z - \varphi_2). \quad (5.11)$$
Pole wypadkowe dane jest równaniem

\[E(r, t) = \hat{x}2E_0 \cos \left(kz + \frac{\varphi_1 - \varphi_2}{2} \right) \cos \left(\omega t - \frac{\varphi_1 + \varphi_2}{2} \right). \]
(5.12)

Po porównaniu ze wzorem (5.1) widać, że

\[E_0(r) = 2E_0 \cos \left(kz + \frac{\varphi_1 - \varphi_2}{2} \right). \]
(5.13)

Podstawiając (5.13) do \(\Omega(R) \) w wyrażeniu (5.9) na potencjał, otrzymujemy

\[U(z) = \frac{\hbar \Delta}{\Delta^2 + (\frac{\Gamma}{2})^2} \Omega_0^2 \cos^2 \left(kz + \frac{\varphi_1 - \varphi_2}{2} \right) \]
\[= U_0 \cos^2 \left(kz + \frac{\varphi_1 - \varphi_2}{2} \right) \]
(5.14)

gdzie zdefiniowaliśmy

\[U_0 = \frac{\hbar \Delta}{\Delta^2 + (\frac{\Gamma}{2})^2} \Omega_0^2 \]
(5.15)

Otrzymaliśmy więc periodyczny potencjał o okresie przestrzennym \(\lambda/2 \). Potencjał taki, ze względu na możliwość lokalizacji odpowiednio zimnych atomów w swoich minimach, nazywany siecią optyczną. Warto zauważyć, że zmiana faz \(\varphi_1 \) i \(\varphi_2 \) nie prowadzi do zmiany kształtu potencjału, a jedynie go przesuwa wzdłuż \(z \). Przyjmując dla uproszczenia \(\varphi_1 - \varphi_2 = 0 \) i rozwijając (5.14) wokół minimum dostajemy harmoniczne przybliżenie potencjału (5.14)

\[U(z) \approx U_0 k^2 z^2 = \frac{1}{2} \kappa z^2 \]
(5.16)
z częstością wibracyjną

\[\omega_{\text{vib}} = \sqrt{\frac{\kappa}{m}} = k \sqrt{\frac{2U_0}{m}} \]
(5.17)

Na koniec warto zapisać przybliżenie wyrażenia (5.9) dla dużych odstępów \(|\Delta| \gg \frac{\Gamma}{2} \)

\[U(R) \approx \frac{1}{8} \frac{\hbar}{\Delta} \Omega^2(R) \propto \frac{I(R)}{\Delta}. \]
(5.18)

Powyższe wyprowadzenie jest idealizacją rzeczywistej sytuacji fizycznej, gdyż dotyczy atomu dwupoziomowego. W przypadku atomu \(^{85}\text{Rb}\) w stanie podstawowym \(F_g = 3 \) występuje siedem podpoziomów zeemanowskich. Ze względu na różne wartości współczynników Clebscha-Gordana te podpoziomy są przesunięte światłem w ten sposób, że tworzą cztery potencjały periodyczne w przestrzeni (tak jak to pokazano na rysunku 5.1), o różnych głębokościach (zależnych od współczynników Clebscha-Gordana i natężenia wiązek tworzących sieć) i różnych obsadzeniach, ustalonych w wyniku pompowania optycznego światłem wiązek pułapkujących.
5.3 Przejścia wibracyjne w potencjale jednowymiarowej sieci optycznej

W tym paragrafie przedstawimy rachunki dotyczące kształtu rezonansu związanego z przejściem ramanowskim pomiędzy poziomami wibracyjnymi atomu spułapkowanego w studni potencjału $U(z)$ jednowymiarowej sieci optycznej (5.14). Obliczmy najpierw amplitudę prawdopodobieństwa spontanicznego przejścia ramanowskiego i wykorzystamy ten wynik do obliczenia amplitudy prawdopodobieństwa wymuszonego przejścia ramanowskiego. Następnie znajdziemy funkcje falowe stanów wibracyjnych, potrzebne do obliczenia elementów macierzowych przejścia. Amplituda rezonansów rejestrowanych w widmie wiązki próbkującej zależy również od różnicy populacji poziomów wibracyjnych, którą obliczymy w kolejnej części tego paragrafu. Wreszcie podamy energie i szerokości stanów wibracyjnych i pokażemy jak wpływają one na kształt rezonansów sieciowych.

Stan atomu przedstawiamy w bazie $|i⟩ \otimes |χ⟩$, gdzie $|i⟩$ dotyczą wewnętrznych stopni swobody atomu (czyli stanów elektronowych opisanych w układzie środka masy), a $|χ⟩$ odpowiadają zewnętrznym stopniom swobody i zostaną omówione w tym paragrafie w części 5.3.3. Współrzędne i pędy cząstek tworzących atom w układzie laboratoryjnym oznaczamy odpowiednio $\mathbf{r}_α$ i $\mathbf{p}_α$. Zmienne związane z układem środka masy oznaczamy indeksami łacińskimi: j dla jądra atomowego, e dla elektronów. Masy jądra i elektronu oznaczamy odpowiednio m_j i m_e. Zmienne \mathbf{R} i \mathbf{P} oznaczają współrzędną środka masy układu i pęd atomu, czyli odnoszą się do atomu jako całości. Swobodny atom znajduje się w polu promieniowania o potencjale wektorowym $\mathbf{A}(\mathbf{R})$, pochodząącym w naszym przypadku od wiązek tworzących sieć optyczną. Hamiltonian H_R tego pola zdefiniowany jest we wzorze (5.24) poniżej. Hamiltonian układu atom-pole promieniowania w cechowaniu Coulomba ma ogólną
postać

\[
H = \sum_{\alpha} \frac{p_{\alpha}^2}{2m_{\alpha}} + \sum_{\alpha > \beta} \frac{q_\alpha q_\beta}{4\pi \varepsilon_0 |r_\alpha - r_\beta|} + \sum_{\alpha} \varepsilon_{Coul} + \\
- \sum_{\alpha} \frac{q_\alpha}{m_{\alpha}} p_\alpha \cdot A(r_\alpha) + \sum_{\alpha} \frac{q_\alpha^2}{2m_{\alpha}} A^2(r_\alpha) + H_R. \tag{5.19}
\]

Dla Z-elektronowego atomu o masie \(m\) hamiltonian (5.19) po łatwych przekształceniach przybiera postać

\[
H = H_0 + \frac{P^2}{2m} + V_{\text{int}} + V_{\text{ext}} + H_R, \tag{5.20}
\]

gdzie poszczególne składniki wyrażają się wzorami:

\[
H_0 = \frac{p_j^2}{2m_j} + \sum_{e} \frac{p_e^2}{2m_e} - \sum_{e} \frac{Zq_e^2}{4\pi \varepsilon_0 |r_e - r_j|} \\
+ \sum_{e > e'} \frac{q_e^2}{4\pi \varepsilon_0 |r_e - r_{e'}|} + \varepsilon_{Coul}, \tag{5.21}
\]

\[
V_{\text{int}} = -q_e \left(\sum_{e} \frac{p_e}{m_e} - \frac{Zp_j}{m_j} \right) \cdot A(R), \tag{5.22}
\]

\[
V_{\text{ext}} = \left(\sum_{e} \frac{q_e^2}{2m_e} + \frac{Z^2q_e^2}{2m_j} \right) A^2(R), \tag{5.23}
\]

\[
H_R = \sum_{j} \hbar \omega_j \left(a_j^\dagger a_j + \frac{1}{2} \right), \tag{5.24}
\]

gdzie przez \(q_e\) oznaczyliśmy ładunek elektronu a przez \(\varepsilon_{Coul}\) łączną energię samo-oddziaływania kulombowskiego cząstek naładowanych w atomie (ang. Coulomb self-energy). Przy wyprowadzeniu powyższych wzorów skorzystaliśmy z przybliżenia długofalowego, tj. z założenia, że długość fali promieniowania jest znaczno większa od rozmiarów atomu, dzięki czemu wartość potencjału wektorowego jest w przybliżeniu taka sama dla każdej z cząstek i wynosi \(A(R)\).

Zakładamy dodatkowo, że atom znajduje się w zewnętrznym potencjale przyciągającym \(U(R)\), przyjmującym wartość minimalną w punkcie \(R = 0\). Przyjmuje się, że głębokość i rozmiar przestrzenny potencjału pozwalają na uwzględnienie atomu, który zaczyna wykonywać skwantowany ruch oscylacyjny, co prowadzi do powstania dyskretnych stanów związanych \(|\chi_n\rangle\) o energii \(E_n\). Stany te są stanami własnymi hamiltonianu

\[
H_{\text{ext}} = \frac{P^2}{2m} + U(z) \tag{5.25}
\]

związanego z ruchem atomu jako całości. W dalszej części rozważań będziemy je nazywać wibracyjnymi. W naszym przypadku \(U(R)\) jest jedną ze studni jednowymiarowego potencjału \(U(R)\) danego wzorem (5.14).

5.3.1 Amplituda pojedynczego przejścia spontanicznego

Przedstawione w tym paragrafie obliczenia są wzorowane na przypadku jonu w potencjale pułapującym omówionym w podręczniku [77].
Niech w chwili początkowej atom znajduje się we wzbudzonym stanie elektronowym $|b\rangle$, przy braku fotonów. Jego stan jest dany jako $|b,\chi_n;0\rangle$, gdzie $|\chi_n\rangle$ opisuje początkowy stan wibracyjny, związany z lokalizacją atomu w potencjale $U(R)$. Po emisji spontanicznej fotonu o polaryzacji $\hat{\epsilon}$ i wektorze falowym k atom znajduje się w elektronowym stanie podstawowym $|a\rangle$ i stanie wibracyjnym $|\chi_l\rangle$. Amplitudę prawdopodobieństwa takiego procesu zapisujemy jako

$$A_1 = \langle a,\chi_l;k\hat{\epsilon}|H + U(z)|b,\chi_n;0\rangle,$$

gdzie H dany jest wzorem (5.20). Stany $|a,\chi_l;k\hat{\epsilon}\rangle$ i $|b,\chi_n;0\rangle$ są stanami własnymi hamiltonianu $H_0 + H_{ext} + H_R$ i mają energie równe odpowiednio $\mathcal{E}_a + \varepsilon_l + \hbar ck$ oraz $\mathcal{E}_b + \varepsilon_n$, gdzie $k = |k|$. Latwo pokazać, że V_{ext} nie sprzęga tych stanów. Rzeczywiście,

$$\langle a,\chi_l;k\hat{\epsilon}|V_{ext}(R)|b,\chi_n;0\rangle = \langle a|b\rangle \langle \chi_l;k\hat{\epsilon}|V_{ext}(R)|\chi_n;0\rangle.$$

Powyższe wyrażenie jest równe zero, bo stany $|a\rangle$ i $|b\rangle$ są ortogonalne. Taki wynik otrzymaliśmy, gdyż V_{ext} jest funkcją jedynie położenia atomu jako całości i nie zależy od współrzędnych związanych ze stanem wewnętrznym atomu ani z polem świetlnym. Z kolei H_0 zależy wyłącznie od zmiennych związanych z wewnętrznymi stopniami swobody elektronów i jądra. Jedynie V_{int} zależy jednocześnie od współrzędnych obu typów i jako funkcja $A(R)$ zawiera operatora kreacji i anihilacji fotonów. Dlatego V_{int} jest jedynym czlonem hamiltonianu mającym niezerowe elementy pozadiagonalne w bazie stanów układu atom-pole i wnoszącym wkład do amplitudy A_1 przejścia.

Obliczymy więc szukaną amplitudę przejścia. Skorzystajmy z rozwinięcia potencjału wektorowego pola na mody

$$A(R) = \int d^3k \sum_\epsilon A_\omega \left(\hat{\epsilon} a_\epsilon(k)e^{i k R} + \hat{a}_\epsilon^\dagger(k)e^{-i k R} \right),$$

gdzie

$$A_\omega = \sqrt{\frac{\hbar}{2\varepsilon_0\omega(2\pi)^3}},$$

i ε_0 oznacza przenikalność dielektryczną próżni. Ponieważ w rozważanym przypadku liczba fotonów w stanie końcowym jest o jeden większa od liczby fotonów stanu początkowego, to dla fotonu o zadanym wektorze falowym k i zadanej polaryzacji $\hat{\epsilon}$, w całce (5.27) występuje tylko jeden człon, którego element macierzowy pomiędzy stanem końcowym i początkowym jest niezerowy. Jest to składnik wyrażający kreację zadanego fotonu

$$A_\omega \hat{\epsilon} a_\epsilon^\dagger(k)e^{-i k R}.$$

W takim razie szukana amplituda emisji spontanicznej (5.26) może zostać obliczona

1Ponieważ w dalszej części wyprowadzenia będziemy obliczać amplitudę przejścia ramanowskiego, a więc związanego z wynieszoną absorpcją i emisją fotonów, założenie konkretnego wektora k i polaryzacji $\hat{\epsilon}$ jest uzasadnione.
następująco:

\[A_1 = \langle a, \chi_l; k\hat{\epsilon} | - \frac{q}{m_e} \mathbf{p} \cdot \mathbf{A}(\mathbf{R}) | b, \chi_n; 0 \rangle = \]

\[= -\mathcal{A}_w \frac{q}{m_e} \langle a, \chi_l; k\hat{\epsilon} | \mathbf{p} \cdot \hat{\epsilon} a^\dagger(\mathbf{k})e^{-i\mathbf{k} \cdot \mathbf{R}} | b, \chi_n; 0 \rangle = \]

\[= -\mathcal{A}_w \frac{q}{m_e} \langle a | \mathbf{p} \cdot \hat{\epsilon} | b \rangle \langle \chi_l | e^{-i\mathbf{k} \cdot \mathbf{R}} | \chi_n \rangle \langle \mathbf{k}\hat{\epsilon} | a^\dagger(\mathbf{k}) | 0 \rangle = \]

\[= -\mathcal{A}_w \frac{q}{m_e} \langle a | \mathbf{p} \cdot \hat{\epsilon} | b \rangle \langle \chi_l | e^{-i\mathbf{k} \cdot \mathbf{R}} | \chi_n \rangle \]

gdzie dla uproszczenia zapisu wprowadziliśmy oznaczenie

\[p = \sum_e p_e - \frac{2 m_e}{m_f} \sum_j p_j. \quad (5.30) \]

Ostatecznie, poszukiwana amplituda może być zapisana jako

\[A_1 \propto \langle a | \mathbf{p} \cdot \hat{\epsilon} | b \rangle \langle \chi_l | e^{-i\mathbf{k} \cdot \mathbf{R}} | \chi_n \rangle \quad (5.31) \]

5.3.2 Amplituda przejścia ramanowskiego

Rozpatrzymy teraz proces przejścia ramanowskiego atomu ze stanu \(| a, \chi_n \rangle \) do stanu \(| a, \chi_l \rangle \) przez absorpcję fotonu \(| k\hat{\epsilon} \rangle \) i wymuszoną emisję fotonu \(| k'\hat{\epsilon} \rangle \) o tej samej polarizacji. Amplitudę prawdopodobieństwa takiego procesu liczymy w drugim rzędzie rachunku zaburzeń [77] i otrzymujemy

\[A_2 = \sum_{|v, \chi_v\rangle} \frac{\langle a, \chi_l; k\hat{\epsilon}V_{\text{int}} | v, \chi_v; 0 \rangle \langle v, \chi_v; 0 | V_{\text{int}} | a, \chi_n; k\hat{\epsilon} \rangle}{\mathcal{E}_a + \varepsilon_n - (\mathcal{E}_v + \varepsilon_v) + \hbar \omega}. \quad (5.32) \]

W powyższym wyrażeniu sumowanie dotyczy wszystkich możliwych stanów pośrednich atomowych \(| v \rangle \) i zewnętrznych stopni swobody \(| \chi_v \rangle \) (również niezlokalizowanych), a \(\omega \) jest częstością indukujących przejście fotonów. W interesującym nas przypadku doświadczalnym, odstrzenie wiązek indukujących przejścia od rezonansu atomowego wynosi \(\Delta = 2\pi \cdot 140 \text{ MHz} \) i dlatego pełna suma po stanach \(| v \rangle \) może zostać przybliżona przez jeden składnik, związany z przejściem przez najbardziej rezonansowy pośredni poziom elektronowy dla \(F_e = 4 \), który oznaczmy jako \(| f \rangle \).

(Schemat poziomów linii D₂ atomu \(^{85}\text{Rb}\) znajduje się w rozdziale 2.)

W kolejnym przybliżeniu skorzystamy z faktu, że różnica energii poziomów wibracyjnych zlokalizowanego atomu \(| \chi_v \rangle_{\text{vib}} \) jest niewielka w porównaniu z energią fotonów indukujących przejście i różnicą energii elektronowych stanów atomowych:

\[| \varepsilon_n - \varepsilon_v | \ll \hbar \omega, \]

\[| \varepsilon_n - \varepsilon_v | \ll \hbar \omega_0 = \mathcal{E}_b - \mathcal{E}_a. \quad (5.33) \]

Mianownik każdego składnika sumy (5.32) po stanach wibracyjnych \(| \chi_v \rangle_{\text{vib}} \) jest więc w przybliżeniu równy

\[\mathcal{E}_a - \mathcal{E}_v + \varepsilon_a + \varepsilon_v + \hbar \omega \approx \hbar (\omega - \omega_0) = \hbar \Delta. \quad (5.34) \]

Z kolei stany kontinuum, dla których nie jest spełnione przybliżenie (5.33), są szybkozmiernie w przestrzeni i całki, w których te stany występują wnoszą zaniedbywalnie mały wkład do wyrażenia (5.35). Dlatego również w składnikach sumy (5.32)
5.3. Przejścia wibracyjne w sieci optycznej

po tych stanach można mianownik zastąpić przez \(h\Delta \). W takim razie otrzymujemy:

\[
A_2 = \frac{|\langle a| p \leq \hat{\epsilon}| f \rangle|^2}{h\Delta} \sum_{\chi_v} \langle \chi_l | e^{i\mathbf{k} \cdot \mathbf{R}} | \chi_n \rangle \langle \chi_v | e^{i\mathbf{k} \cdot \mathbf{R}} | \chi_n \rangle.
\] (5.35)

Korzystając następnie z relacji zupełności bazy stanów \(|\chi_v\rangle \)

\[
\sum_{\chi_v} |\chi_v\rangle \langle \chi_v | = 1.
\] (5.36)
dostajemy

\[
A_2 = \frac{|\langle a| p \leq \hat{\epsilon}| f \rangle|^2}{h\Delta} \langle \chi_l | e^{i(k+k') \cdot \mathbf{R}} | \chi_n \rangle.
\] (5.37)

W rozpatrywanym przez nas przypadku doświadczalnym (konfiguracji 3. z paragrafu 4.2.3) wiązki tworzące sieć optyczną rozchodzą się (prawie) wzdłuż jednego kierunku z wiązką próbującą. W takim przypadku amplituda prawdopodobieństwa (5.37) przejścia ramanowskiego jest duża jedynie, gdy indukujące przejście fotony są współbieżne, tzn. \(k \approx k' \). Dotyczy to fotonów pochodzących z wiązki próbującej i z wiązki tworzącej sieć, rozchodzącej się prawie współbieżnie z próbką. Natomiast amplitudę przejścia indukowanego przez wiązki prawie przeciwbieżne można z dobrym przybliżeniem zaniedbać. Ostatecznie otrzymujemy wynik

\[
A_2 \propto \langle \chi_l | e^{2i\mathbf{k} \cdot \mathbf{R}} | \chi_n \rangle.
\] (5.38)

5.3.3 Stany wibracyjne atomu w potencjale sieciowym

Funkcje falowe stanów wibracyjnych

Kształt potencjalu fali stojącej wytworzonej przez dwie jednakowo spolaryzowane, przeciwbieżne wiązki światła o długości fali \(\lambda \) jest postaci (5.14). Dla najniższych poziomów wibracyjnych można jednak z dobrym przybliżeniem przyjąć, że unormowane funkcje falowe stanów wibracyjnych \(|\chi_n\rangle \) w rozważanym potencjale \(U(z) \) są takie same, jak dla jednowymiarowego potencjalu harmonicznego (5.16) o częstości wibracyjnej (5.17), to znaczy

\[
\chi_n(z) = \frac{1}{\sqrt{n!}} \frac{1}{2^{\frac{n}{2}}} \pi^{\frac{n}{4}} e^{-\frac{(\zeta z)^2}{2}} H_n(\zeta z),
\] (5.39)

gdzie wprowadziliśmy oznaczenie

\[
\zeta = \sqrt{\frac{M \omega_{vib}}{\hbar}}.
\] (5.40)

\(H_n \) we wzorze (5.39) oznacza wielomian Hermite’a \(n \)-tego stopnia, który dany jest wyrażeniem

\[
H_n(x) = \frac{(-1)^n}{\sqrt{2^n \pi^n n!}} e^{-x^2} \frac{d^n e^{-x^2}}{dx^n} \frac{1}{n! \sqrt{\pi}}.
\] (5.41)

Podstawiając do wyrażenia (5.38) funkcje falowe postaci (5.39) można obliczyć amplitudę prawdopodobieństwa przejścia ramanowskiego pomiędzy stanami opisywanymi tymi funkcjami, związaną z przejściem zachodzącym w pojedynczym atomie.
Populacje poziomów wibracyjnych.

Amplituda prawdopodobieństwa dla przejścia zachodzącego w zespole atomów dana jest przez iloczyn policzonej powyżej amplitudy prawdopodobieństwa zmiany stanu pojedynczego atomu (5.37) i różnicy populacji stanów końcowego i początkowego. Do znalezienia kształtu rezonansów dla przejść ramanowskich pomiędzy poziomami wibracyjnymi atomów zlokalizowanych w sieci konieczna jest znajomość populacji tych stanów. Przy założeniu, że poziomy w sieciach są obsadzone zgodnie z rozkładem termicznym i przy zaniedbaniu poprawek anharmonicznych do energii tych stanów (mają one znikomy wpływ na populację poziomów [78]), populacja stanu $|\chi_n\rangle$ wynosi

$$\Pi_n = Z^{-1} \exp \left(-\frac{\hbar \omega_{vib} (n + \frac{1}{2})}{k_B T} \right),$$

(5.42)

gdzie Z jest funkcją rozkładu. W takim razie różnica populacji pomiędzy stanami $|\chi_n\rangle$ i $|\chi_{n+1}\rangle$ jest równa

$$\Delta \Pi_I = \Pi_n - \Pi_{n+1} = C_I \exp \left(-\frac{\hbar \omega_{vib} n}{k_B T} \right),$$

(5.43)

gdzie czynnik niezależny od n oznaczyliśmy jako

$$C_I = Z^{-1} \exp \left(-\frac{\hbar \omega_{vib}}{2k_B T} \right) \left[\exp \left(-\frac{\hbar \omega_{vib}}{k_B T} \right) - 1 \right].$$

(5.44)

Podobne obliczenia można przeprowadzić dla przejść pomiędzy stanami wibracyjnymi $|\chi_n\rangle$ i $|\chi_{n+2}\rangle$, otrzymując wynik

$$\Delta \Pi_{II} = \Pi_n - \Pi_{n+2} = C_{II} \exp \left(-\frac{\hbar \omega_{vib} n}{k_B T} \right),$$

(5.45)

gdzie czynnik niezależny od n jest inny niż poprzednio i wynosi

$$C_{II} = Z^{-1} \exp \left(-\frac{\hbar \omega_{vib}}{2k_B T} \right) \left[\exp \left(-\frac{2\hbar \omega_{vib}}{k_B T} \right) - 1 \right].$$

(5.46)

oraz dla stanów $|\chi_n\rangle$ i $|\chi_{n+3}\rangle$, co daje:

$$\Delta \Pi_{III} = \Pi_n - \Pi_{n+2} = C_{III} \exp \left(-\frac{\hbar \omega_{vib} n}{k_B T} \right),$$

(5.47)

$$C_{III} = Z^{-1} \exp \left(-\frac{\hbar \omega_{vib}}{2k_B T} \right) \left[\exp \left(-\frac{3\hbar \omega_{vib}}{k_B T} \right) - 1 \right].$$

(5.48)

Energie stanów wibracyjnych

Energie stanów wibracyjnych potencjału $U(z)$ danego wzorem (5.14) różnią się od energii dla potencjału harmonicznego. Rozwinięcie wyrażenia (5.14) z dokładnością do członów z^4 ma postać:

$$U(z) = U_0 \left(k^2 z^2 - \frac{1}{3} k^4 z^4 \right).$$

(5.49)
Pierwszy składnik powyższego rozwinięcia odpowiada potencjałowi harmonicznemu (5.16) o częstości wibracyjnej ω_{vib} danej wzorem (5.17), którą możemy również wyrazić przez częstość odrzutu, otrzymując

$$\omega_{\text{vib}} = 2 \omega_{\text{rec}} \sqrt{\frac{U_0}{E_{\text{rec}}}}, \quad (5.50)$$

gdzie energia i częstość odrzutu są zdefiniowane jako

$$E_{\text{rec}} = \frac{\hbar^2 k^2}{2m}, \quad \omega_{\text{rec}} = \frac{E_{\text{rec}}}{\hbar} = \frac{\hbar k^2}{2m}. \quad (5.51)$$

Poprawkę do energii n-tego stanu wibracyjnego oscylatora harmonicznego

$$E_{\text{harm}} n = \hbar \omega_{\text{vib}} \left(n + \frac{1}{2} \right) \quad (5.53)$$

można znaleźć przyjmując za funkcje falowe potencjału anharmoniczego stany własne oscylatora harmonicznego i stosując rachunek zaburzeń w pierwszym rzędzie. Wynik otrzymany dla stanu $|\chi_n\rangle$

$$\Delta E_n = -\frac{1}{4} (2n^2 + 2n + 1) E_{\text{rec}}, \quad (5.54)$$

prowadzi do wniosku, że uwzględnienie anharmoniczności zmniejsza różnicę energii pomiędzy poziomami wibracyjnymi $|\chi_{n+1}\rangle$ i $|\chi_n\rangle$ o wartość $(n+1)E_{\text{rec}}$, co daje wzór na częstość przejścia pomiędzy tymi stanami

$$\omega_{\text{anhar}}^{n \rightarrow n+1} = \omega_{\text{vib}} - (n + 1) \omega_{\text{rec}}. \quad (5.55)$$

Szerokości stanów wibracyjnych

Obserwacja przejść wibracyjnych możliwa jest dzięki znacznemu wydłużeniu czasu życia populacji i koherentacji atomowych w sieciach optycznych. Gdyby przyjąć, że szybkość rozpraszania spontanicznego fotonów przez atomy w sieciach optycznych jest taka sama jak dla niezlokalizowanych atomów, a więc wynosi [79]

$$\Gamma' = \Gamma \frac{\Omega^2/2}{\Delta^2 + \Gamma^2/4}, \quad (5.56)$$

szerokość poziomów wibracyjnych przekraczała by kilkukrotnie odległość pomiędzy nimi. Skoro obserwowujemy rezonanse wibracyjne, ich czas życia musi w sieciach optycznych znacząco się wydłużać w stosunku do $1/\Gamma'$. Czas życia atomu w danym stanie wibracyjnych ograniczony jest przez dwa procesy. Pierwszy z nich polega na absorpcji fotonu przez atom w pułapkowanym stanie wewnętrzny $|a\rangle$ i emisji spontanicznej, która prowadzi do przepompowania atomu do stanu $|b\rangle$ różnego od $|a\rangle$. W ogólności stan $|b\rangle$ może być innaczej lub wcale nie pułapkowany w potencjałe sieci optycznej. Drugi proces polega na absorpcji i emisji spontanicznej fotonu bez zmiany wewnętrznego stanu atomowego $|a\rangle$. W takim przypadku może jednak zmienić się stan oscylacyjny. Obydwa te procesy prowadzą
Przejścia ramanowskie w sieciach do opuszczenia przez atom dotychczas zajmowanego poziomu wibracyjnego. W standardowo rozpatrywanych sieciach optycznych w konfiguracji $lin \perp lin$ i dla przejścia atomowego $F_g = 1/2 \rightarrow F_e = 3/2$ procesy te są tego samego rzędu i powodują, że szerokość poziomu wibracyjnego $|\chi_n\rangle$ dana jest wzorem [71, 79]

$$\Gamma_n \approx \Gamma'(n + 1/2) \sqrt{\frac{E_R}{U_0}} = \Gamma'(2n + 1) \frac{E_R}{\hbar \omega_{vib}}. \quad (5.57)$$

Dla silnie zlokalizowanych atomów stosunek $E_R/\hbar \omega_{vib}$, zwany czynnikiem Lamb-Dicka [80], jest znacznie mniejszy od jedynki. W typowych konfiguracjach sieci optycznych prowadzi to do kilkudziesięciokrotnego zmniejszenia szybkości Γ' spontanicznego rozpraszania fotonów, a więc do małych szerokości poziomów wibracyjnych. Ze wzoru (5.57) widać również, że szerokości te zwiększają się liniowo wraz ze wzrostem kwantowej liczby oscylacyjnej n.

Wzór (5.57) został wyprowadzony przy założeniu, że jedynym światłem oddziałującym z atomami w sieciach optycznych jest światło laserowe tworzące te sieci. W przypadku badanym w niniejszej pracy, atomy w sieci optycznej oddziałują również z fotonami wiązek pułapkujących. Pomimo tego, że sięć wytworzona jest przez wiązki laserowe odstojone w stronę wyższych częstotliwości, a więc atomy lokalizują się w minimach natężenia światła, gdzie prawdopodobieństwo spontanicznego rozpraszania fotonów sieci jest zaniedbywalnie małe, atomy wciąż mogą rozpraszać fotony wiązek pułapkujących. Procesy te mogą prowadzić do wydajnego optycznego przepompowywania atomów i znacznego skrócenia czasów życia poziomów wibracyjnych. Ze wzoru (5.57) wynika, że szerokości te zwiększają się liniowo wraz ze wzrostem kwantowej liczby oscylacyjnej n.

Przy modelowaniu sieci optycznych uwzględniono wynikający ze wzoru (5.57) liniowy wzrost szerokości poziomu wibracyjnego z liczbą n, a czynnik $\Gamma'/E_R/\hbar \omega_{vib}$ został dobrany tak, aby osiągnąć jak najlepszą zgodność modelowanych krzywych z danymi doświadczalnymi.

5.4 Procedura modelowania widm sieciowych

Przedstawione powyżej rozważania pozwalają na proste modelowanie sygnału wiązki próbującej, oddziałującej ze zlokalizowanymi w potencjale (5.14) sieci optycznych atomy. Pamiętamy z paragrafu 5.3.2, że przejścia ramanowskie pomiędzy poziomami wibracyjnymi atomu indukowane są przez fotony wiązki próbującej i wiązki sieciowej tworzącej z nią mały kąt θ. W dalszej części pracy będziemy te przejścia i rezonanse nazywać sieciowymi. Przejścia te są rezonansowe, gdy odstojenie δ próbk od wiązki sieciowej jest równe różnicy częstości końcowego i początku poziomu wibracyjnego. Rejestrowany w widmie absorpcji kształt jest złożeniem krzywych lorentzowskich postaci (3.1), odpowiadającym rezonansom związanym z przejściami pomiędzy poszczególnymi parami poziomów wibracyjnych. Znak rezonansu zależy od znaku różnicy populacji stanu początkowego i końcowego. W związku z termicznym obsadzeniem poziomów oscylacyjnych w sieciach optycznych, dla odstroiń ujemnych rejestruje się wzmocnienie wiązki próbującej, a dla odstroiń dodatnich jest ona osłabiana.

Przykładowe widmo absorpcji wiązki próbującej przedstawione jest na rysunku 5.2 (a). Widmo to zostało wygenerowane dla potencjału harmonicznego i uwzględnia...
Rys. 5.2: Schematycznie pokazane poziomy wibracyjne atomów zlokalizowanych w studni potencjału sieci optycznej i widma odpowiadające kolejnym etapom modelowania, opisanym w tekście.
Przejścia ramanowskie w sieciach jedynie przejścia pomiędzy sąsiednimi poziomami, tak jak to schematycznie pokazano na rysunku. Poziomy te różnią się częstotliwością o \(2\pi \cdot 150\) kHz i są obsadzone termicznie w temperaturze \(T = 50\mu K\). Szerokości poziomów są z założenia równe i wynoszą \(\gamma = 2\pi \cdot 10\) kHz.

W rzeczywistości potencjał (5.14) jest anharmoniczny co sprawia, że jego poziomy wibracyjne nie są równoodległe. Uwzględnienie poprawek do energii poziomów (5.54) prowadzi do różnych częstości dla kolejnych przejść wibracyjnych \(\omega_{anhar}^{n \rightarrow n+1}\), tak jak to wynika ze wzoru (5.55). Przy założeniu, że potencjał (5.14) zawiera 10 poziomów wibracyjnych, otrzymuje się widmo absorpcji wiązki próbkującej pokazane na rysunku 5.2 (b). Widmo to jest poszerzone w stosunku do przypadku (a), ponieważ składowe odpowiadające przejściom pomiędzy wyżej wzbudzonymi poziomami mają coraz mniejszą częstotliwość. Z tej samej przyczyny wypadkowe maksimum i minimum rezonansów znajduje się bliżej \(\delta = 0\).

Przejścia ramanowskie w sieciach mogą zachodzić również pomiędzy poziomami \(|\chi_n\rangle\) i \(|\chi_{n+2}\rangle\). Prowadzi to do powstania w widmie absorpcji tak zwanej „drugi harmonicznej”. Wymodelowane widmo uwzględniające przejścia \(|\chi_n\rangle \leftrightarrow |\chi_{n+1}\rangle\) i \(|\chi_n\rangle \leftrightarrow |\chi_{n+2}\rangle\) pokazane jest na rysunku 5.2 (c).

Ostatnim etapem prostego modelowania jest uwzględnienie niejednakowej szerokości kolejnych poziomów wibracyjnych. Uwzględnienie wzoru (5.57) prowadzi do otrzymania widma pokazanego w części (d) rysunku 5.2.

Przestawione powyżej modelowanie zostało wykorzystane do odtworzenia kształtu zmierzonych w eksperymencie widm. Wyniki doświadczalne i przykłady ich symulowania znajdują się w następnym rozdziale.
Rozdział 6

Sieci optyczne w pułapce magnetooptycznej

6.1 Wprowadzenie

W poprzednim rozdziale wykazaliśmy, że fala stojąca wytworona przez dwie przeciwieźne wiązki światła o tej samej polaryzacji prowadzi do powstania periodycznej struktury studni potencjału, o okresie przestrzennym $\lambda/2$. Gdy tak jak w naszym przypadku wiązki te są odstrojone daleko od rezonansu atomowego, głębokość U_0 wytworzonych studni potencjału, dana wzorem (5.18), jest wprost proporcjonalna do natężenia światła wiązek tworzących sieć optyczną i odwrotnie proporcjonalna do ich odstrojenia. Taka sieć nie jest wrażliwa na fluktuacje faz tworzących ją wiązek, ponieważ wraz ze zmianą ich względnej fazy wytworzony wzór interferencyjny przesuwa się, ale jego topologia nie ulega zmianie [81]. Tak więc wystarczająco zimne atomy (o energii kinetycznej porównywalnej z głębokością potencjału U_0) pułapkowane są w sposób stabilny w jednym wymiarze - w kierunku rozchodzenia się wiązek tworzących sieć, w dwóch pozostałych pozostając swobodne.

W niniejszym rozdziale przestawione zostaną wyniki doświadczalne dotyczące wytworzenia w pułapce magnetooptycznej takiej stabilnej jednowymiarowej sieci. Pokażemy, że jej podstawowe własności, takie jak obsadzenie sieci i głębokość potencjału, mogą być badane w prosty sposób i że zależą one nie tylko od parametrów tworzących ją wiązek, ale także od natężenia i odstrojenia od rezonansu atomowego wiązek pułapkujących. Wreszcie, opierając się na rozważaniach z poprzedniego rozdziału, przedstawimy wyniki modelowania zarejestrowanych w doświadczeniu sygnałów sieciowych.

1 Warto pamiętać, że inaczej jest w przypadku pola pochodzącego od sześciu wiązek pułapki magnetooptycznej, gdzie wraz ze zmianą względnej fazy wiązek zmienia się topologia wzoru interferencyjnego. Uniemożliwia to stabilną lokalizację atomów, dlatego przyczyną związany z siecią optyczną nie był uwzględniany przy interpretacji złożonej struktury widm absorpcji mierzonych we włączonej pułapce [20].
6.2 Obserwacja i badanie lokalizacji atomów w sieci optycznej

6.2.1 Konfiguracja doświadczenia

W celu wytworzenia w działającej pułapce magnetooptycznej jednowymiarowej sieci optycznej o potencjale wprowadzono do niej dodatkowo dwie przeciwieństwie, silne wiązki o typowym natężeniu \(I_{\text{pump}} = 300 \mu \text{W/mm}^2 \), odstrojone w stronę wyższych częstotliwości o \(\Delta_{\text{pump}} = 2\pi \cdot 140 \text{ MHz} \). Wiązka próbująca, służąca do badania sieci, była przestrzajana wokół wiązek sieciowych i tworzyła z nimi mały kąt \(\theta \approx 5^\circ \). Wszystkie trzy wiązki miały jednakową polaryzację liniową. Zastosowana geometria pomiaru odpowiada rozpatrywanej w paragrafie 4.2.3 konfiguracji 3. Jak pamiętamy, w takiej geometrii wiązka próbująca oddziałuje niezależnie z dwiema przeciwieństwymi pompami i rejestruje jednocześnie wiązki i szeroki rezonans odrzutu, tak jak to widać na przykładzie widma z rysunku 4.7 (a). Dodatkowo w widnie absorpcji wiązki próbującej obserwowane są struktury pochodzące od przejść ramanowskich pomiędzy poziomami wibracyjnymi zlokalizowanych w sieci optycznej atomów, indukowanych przez fotony wiązki próbującej i wiązki pompującej prawie z nią współbieżnej.2 W dalszej części rozdziału będziemy takie przejścia i struktury nazywać sieciowymi. Dyskusja kształtu tych struktur została przeprowadzona w poprzednim rozdziale.

6.2.2 Obserwacja lokalizacji atomów w sieci optycznej

W omawianej sytuacji doświadczalnej wytworona jednowymiarowa sieć gwarantuje długi czas życia poziomów wibracyjnych dzięki użyciu wiązek odstrojonych ku wyższym częstotliwościom. Pamiętamy, że zgodnie ze wzorem (5.15) w takim przypadku minima potencjału wypadają w minimach natężenia silnie nierezonansowego światła. Oznacza to, że spontaniczne rozpraszanie fotonów wiązek sieciowych przez zlokalizowane atomy jest zaniedbywalnie małe. Jednocześnie, ze względu na dużą wartość odstrojenia, wiązki sieciowe nie zaburzają pracy pułapki. Pozwala to na obserwację stabilnej sieci optycznej w koegzystencji z niezlokalizowaną frakcją atomów i badanie jej własności.

Aby sprawdzić, czy możliwe jest wydajne ładowanie takiej sieci atomami z pułapki magnetooptycznej, zarejestrowaliśmy serię widm absorpcji wiązki próbującej przy stopniowo zmniejszonym natężeniu wiązek pulapkujących i stałym natężeniu wiązek sieciowych. W takim przypadku głębokość potencjału pulapkującego jest (prawie) stała. Potencjał ten lokalizuje atomy, których energia kinetyczna jest porównywalna lub mniejsza od jego głębokości. Wiemy z paragrafu 4.3.3, że zmniejszaniu natężenia wiązek pulapkujących towarzyszy obniżanie temperatury atomów. W takiej sytuacji coraz więcej atomów zostaje zlokalizowanych w minimach potencjału sieci optycznej. Potwierdzają to widma przedstawione na rysunku 6.1, w których coraz bardziej znaczący staje się przyczynek sieciowy.

Systematyczne zbadanie tego zjawiska wymaga znajomości temperatury odpowiadającej kolejnym natężeniom wiązek pulapkujących. Jej wyznaczenie jest w omówianym przypadku zgodne z równaniem (5.37) w paragrafie 5.3.2 na amplitudę przejścia ramanowskiego.

2Wynika to z wyprowadzonego w paragrafie 5.3.2 wzoru (5.37) na amplitudę przejścia ramanowskiego.

3Dyskusję zmian głębokości potencjału pulapkującego ze zmianą natężenia wiązek pulapkujących zawiera paragraf 6.2.6.
6.2. Obserwacja i badanie lokalizacji atomów w sieci optycznej

Rys. 6.1: Widma absorpcji wiązki próbującej zarejestrowane we włączonej pułapce magnetooptycznej w obecności wiązek tworzących sieć optyczną. Przy każdym sygnale podano natężeń \(I_{\text{trap}} \) wiązek pułapkujących w \([\mu \text{W/mm}^2] \). Wraz ze zmniejszaniem tego natężenia, a więc i temperatury atomów, coraz wyraźniej widoczny jest przyczynek związany z istnieniem sieci optycznej.

wianym przypadku bardzo proste. Najpierw w zadanych warunkach doświadczalnych rejestruje się widmo absorpcji wiązki próbującej w konfiguracji 3. z rysunku 4.5 (c). Następnie po zasłonięciu lustra odbijającego wiązku sieciową otrzymuje się konfigurację 2. z rysunku 4.5 (b). Rejestrowany wtedy szerszy rezonans odrzutu pozwala wyznaczyć temperaturę atomów, w sposób opisany w paragrafie 4.2.3. Następnie zmieniane jest natężenie wiązek pułapkujących i w nowych warunkach rejestrowane jest widmo sieciowe i widmo termometryczne. Ponieważ badana sieć jako wytworzone przez modulację natężenia światła o stałej w przestrzeni polaryzacji jest niedysympatyczna (rozdział 5), nie chłodzi ona atomów a jedynie je lokalizuje (o ile te są wystarczająco zimne). Można więc z dobrą dokładnością przyjąć, że zmienna w opisany sposób temperatura odpowiada temperaturze w obecności sieci optycznej.

Na rysunku 6.2 w części (a) pokazano szereg widm absorpcji wiązki próbującej zarejestrowany w konfiguracji 3. dla różnych natężeń wiązek pułapkujących. Natomiast w części (b) przedstawione są widma zmielone w konfiguracji 2. służące do wyznaczania temperatury. Uzyskane w tej serii pomiarowej wyniki temperatury zostały zaprezentowane na wykresie 4.14 w paragrafie 4.3.3 jako ilustracja zależności temperatury atomów od natężenia wiązek pułapkujących. W badanym zakresie temperatura otrzymuje się temperaturę poniżej granicy dopplerowskiej, co potwierdza możliwość lokalizacji tak zimnych atomów w wytworzonej sieci.

6.2.3 Dyskusja kształtu rejestrowanych widm

Do zaprezentowanych w części (a) rysunku 6.2 widm dopasowano zależność teoretyczną uwzględniającą wszystkie 3 przyczyny: wąski i szeroki rezonans odrzutu \(y_{\text{RIR}} \) oraz składową sieciową \(y_{\text{LAT}} \). Zależność taka ma ogólną postać

\[
y(x, y_0, x_0, A_1, \xi_1, A_2, \xi_2, x_1, A_1, \xi_1, x_1, A_II, \xi_II) = y_{\text{RIR}}(x, y_0, x_0, A_1, \xi_1, x_0, A_2, \xi_2) + y_{\text{LAT}}(x, x_0, f_{\text{vib}}, A_1, \xi_1, x_II, A_II, \xi_II).
\]

\[\text{Dla najniższego badanego natężenia wiązek pułapkujących sygnał termometryczny był zbyt słaby i temperatura została obliczona z wyznaczonej z wykresu 4.14 zależności liniowej.}\]
Rys. 6.2: (a) Widma absorpcji wiązki próbkującej zarejestrowane we włączonej pułapce magnetooptycznej w obecności wiązek tworzących sieć optyczną (kolor szary) oraz dopasowane do nich zależności teoretyczne (6.1) (kolor czarny), (b) Widma absorpcji wiązki próbkującej zarejestrowane w konfiguracji 2. (kolor szary) i dopasowane do nich zależności teoretyczne (4.1) (kolor czarny) służące do wyznaczenia temperatury. Przy każdej parze widm (a) i (b) podano natężenie I_{trap} wiązek pułapkujących i odpowiadającą mu temperaturę. Odstrojenie wiązek pułapkujących od rezonansu atomowego $\Delta = -3.12 \Gamma$, natężenie wiązki repompującej $I_{\text{repump}} = 150 \mu W/mm^2$, natężenie wiązek sieciowych $I_{\text{pump}} = 335 \mu W/mm^2$, ich odstrojenie $\Delta_{\text{pump}} = 23 \Gamma$, gradient podłużny pola magnetycznego $\partial_z B = 12.2$ Gauss/cm.
6.2. Przyczynek od odrzutu

Funkcja \(g_{\text{RIR}}(x, y_0, x_0, A_1, \xi_1, x_0, A_2, \xi_2) \) dana wzorem (4.4) zawiera dwie składowe: wąski i szeroki rezonans odrzutu, o amplitudach odpowiednio \(A_1 \) i \(A_2 \), szerokościach odpowiednio \(\xi_1 \) i \(\xi_2 \) i współrzędnej środka symetrii \((x_0, y_0)\). Szerokość rezonansu odrzutu dla dużego kąta \(\xi_2 = \xi_{180 - \theta} \) przyjmowana jest w tym dopasowaniu jako ustalona wartość, wyznaczona z widm zmierzonych w konfiguracji 2. Te widma mają znacząco prostszą strukturę i dopasowanie do nich krzywych (4.1) jest jednoznaczne, jak pokazuje rysunek 6.2 (b).

Przyczynek sieciowy

Funkcja \(g_{\text{LAT}}(x, x_0, f_{\text{vib}}, A_I, \xi_I, x_{II}, A_{II}, \xi_{II}) \) jest sumą składowej \(l(x, x_0, f_{\text{vib}}, A_I, \xi_I) \) związanej z przejściami sieciowymi pomiędzy poziomami wibracyjnymi \(|\chi_n\rangle \leftrightarrow |\chi_{n \pm 1}\rangle\) (tzw. pierwsza harmoniczna) i składowej \(l(x, x_0, 2f_{\text{vib}}, A_{II}, \xi_{II}) \) odpowiadającej przejściom \(|\chi_n\rangle \leftrightarrow |\chi_{n \pm 2}\rangle\) (tzw. druga harmoniczna):

\[
\begin{align*}
\text{Przyczynek sieciowy} & = l(x, x_0, f_{\text{vib}}, A_I, \xi_I) + l(x, x_0, 2f_{\text{vib}}, A_{II}, \xi_{II}). \\
\text{Każda z tych składowych wyraża się sumą dwóch krzywych lorentzowskich o przeciw} & \\
\text{noznaczyciach, wycentrowanych na częstotliwości } x_0 \pm f, o amplitudzie A i szerokości } \xi: \\
\text{takie założenie jest uproszczeniem, ponieważ rejestrowane rezonanse sieciowe nie są } & \\
\text{pojedynczymi krzywymi lorentzowskimi, ale składają się z szeregu składowych lorentzowskich } & \\
\text{wycentrowanych na częstościach } \omega_{\text{anharm}} \text{ danych wzorem (5.55). } & \\
\text{Również założenie, że częstotliwość drugiej harmonicznej jest równa podwojonej często} & \\
\text{tliwości pierwszej harmonicznej jest nieścisłe ze względu na anharmoniczność potencj} & \\
\text{jału pułapkującego i efekty częstości związane z sumowaniem po wielu poziomach } & \\
\text{wibracyjnych. Jednak dopasowywanie do zmierzonych sygnałów tak złożonych zale} & \\
\text{żności byłoby dużym utrudnieniem technicznym. Tymczasem interesuje nas odtwó} & \\
\text{renie kształtu całego przyczynku sieciowego (amplitudy, szerokości, położenia), } & \\
\text{bez wnikania w jego pochodzenie. Okazuje się, że uproszczona zależność (6.2) dobrze } & \\
\text{odtwarza kształty rejestrowanych w doświadczeniu widm. Na potrzeby prezentowa} & \\
\text{nych tu rozważań takie proste modelowanie jest wystarczająco dokładne - jak widać } & \\
\text{na rysunku 6.2, dopasowane krzywe dobrze odtwarzają kształt rejestrowanych widm. } & \\
\end{align*}
\]

6.2.4 Dyskusja sytuacji fizycznej

Dopasowanie do wyników doświadczalnych krzywych teoretycznych postaci (6.1) umożliwia niezależną analizę przyczynków pochodzących od rezonansów odrzutu i od widm sieciowych. Pozwala to m.in porównać względnne amplitudy składowych sieciowych i odrzutu w widmach absorpcji zarejestrowanych dla różnych parametrów pułapki. W ten sposób można ocenić proporcje ilości atomów swobodnych i złokalizowanych w sieci. Na rysunku 6.3 w części (a) ponownie pokazane są zarejestrowane widma, a dodatkowo wykreślone zostały krzywe teoretyczne \(g_{\text{RIR}} \) opisujące dwa rezonanse odrzutu (4.4), o parametrach uzyskanych z dopasowania ogólnej zależności (6.1) do zarejestrowanych widm. W części (b) tego rysunku pokazano wynik odjęcia.
dopasowanej zależności \(g_{\text{RIR}} \) od zarejestrowanego sygnału oraz krzywą teoretyczną opisującą przyczynek pochodzący od sieci \(g_{\text{LATT}} \), o parametmach pochodzących z dopasowania (6.1). Trzeba pamiętać, że odrzutowi podlegają jedynie atomy swobodne wzdłuż kierunku prostopadłego do dwusiecznej kąta pomiędzy wiązkami indukującymi przejście pomiędzy stanami pędowymi atomu. W badanym przypadku małego kąta \(\theta \) pomiędzy wiązką próbującą a jedną z wiązek sieciowych, szeroki rezonans odrzutu pochodzi od atomów, które poruszają się swobodnie wzdłuż wiązek sieciowych. Są to te atomy, których prędkość jest zbyt duża, aby mogły zostać zlokalizowane w jednowymiarowej sieci optycznej. Z kolei wąski rezonans odrzutu dotyczy składowej prędkości prostopadłej do kierunku wiązek sieciowych. W tym kierunku swobodne są zarówno atomy niezlokalizowane, jak i znajdujące się w minimach sieci optycznej. Dlatego wąski rezonans odrzutu pochodzi od wszystkich atomów w pułapce MOT.

Kształt kolejnych widm zmierzonych w dyskutowanej serii pomiarowej można interpretować następująco. Duże natężenie wiązek pułapkujących sprawia, że w pułapce panuje stosunkowo wysoka temperatura i niewiele atomów ma wystarczająco małą prędkość, aby mogły zostać zlokalizowane w minimach przygotowanej sieci. Najzimniejsze atomy są oczywiście pułapkowane, ale ze względu na duże rozprowadzanie spontaniczne światła pułapki przy wysokich natężeniach jej wiązek poziom wibracyjny ulega znacznemu poszerzeniu. Te dwa czynniki sprawiają, że w widmach absorpcji widoczny jest głównie przyczynek RIR. Dlatego w widmach absorpcji widoczny jest głównie przyczynek RIR (szeroki i wąski) pochodzący od swobodnych atomów. Wraz z obniżaniem natężenia światła pułapkującego atomy stają coraz zimniejsze i coraz więcej z nich zostaje uwieńczenych w minimach potencjału sieci optycznej. Zmniejsza się również szerokość poziomów wibracyjnych. Zlokalizowane atomy generują rezonanse sieciowe, natomiast nie wniosą wpadku do szerokiego rezonansu odrzutu. Rzeczywiście, z obniżaniem temperatury rośnie względna amplituda rezonansów sieciowych, a maleje względna amplituda szerokiego rezonansu odrzutu, tak jak to widać na rysunku 6.3. Dla pośrednich temperatur mamy więc do czynienia ze współistnieniem w pułapce magnetooptycznej frakcji atomów swobodnych i atomów zlokalizowanych w jednym kierunku w minimach potencjału sieci. Ponieważ dla mniejszych natężeń wiązek sieciowych atomy są mniej skutecznie pułapkowane, jest ich w pułapce mniej i dlatego maleje również amplituda wąskiego sygnału RIR, związana z całkowitą ilością pułapkowanych w MOT atomów i pogarsza się stosunek sygnału do szumu. W przypadku skrajnie niskich temperatur prawie wszystkie atomy są zlokalizowane w sieci, co prowadzi do dominacji w widmie rezonansów sieciowych i wąskiego sygnału odrzutu.

Poziony wibracyjne atomów w sieci optycznej obsadzone są termicznie. Dlatego dla widm rejestrowanych w wysokich temperaturach znaczący jest przyczynek związany z drugą harmoniczną, który wymagający obsadzenia co najmniej trzech najniżej położonych poziomów. W niskich temperaturach stosunek amplitud sygnału drugiej harmonicznej do pierwszej jest coraz mniejszy.
Rys. 6.3: (a) Widma absorpcji wiązki próbki z rysunku 6.2 zarejestrowane we włączonej pulapce magnetooptycznej w obecności wiązek tworzących sieć optyczną (kolor szary) oraz krzywe teoretyczne opisujące przyczynki związane z rezonansami odzysku (4.4) (kolor czarny), (b) widma związane z przejściami ramanowskimi w sieciach uzyskane przez odjęcie od widm prezentowanych w części (a) dopasowanego przyczynku od rezonansów odzysku (kolor szary) oraz opisująca ten przyczynek zależność teoretyczna (6.3) (kolor czarny). Pod widmem dla $T = 64\,\mu\text{K}$ wykreślono osobno pierwszą (linia ciągła) i drugą harmoniczną (linia przerywana).
6.2.5 Modelowanie widm sieciowych

Powyżej zaprezentowaliśmy zmierzone we włączonej pułapce widma sieciowe i przeprowadziliśmy proste modelowanie ich kształtu przez dopasowanie do wyników doświadczalnych krzywych postaci (6.1) i następnie wyselekcjonowanie składowej (6.2) odpowiedzialnej za przyczyn sieciowy. Takie podejście umożliwia badanie sieci optycznej (np. jej ładowania przy spadku temperatury atomów, zmian częstości wibracyjnej w funkcji parametrów pułapki itp.).

Inne metodą jest wymodelowanie sygnału teoretycznego odtwarzającego kształt zmierzony w doświadczeniu, przy uwzględnieniu rozważań przedstawionych w poprzednim rozdziale. Przykład takiego modelowania zamieszczony jest na rysunku 6.4. W części (a) pokazane jest przykładowe widmo rezonansowe uzyskane przez odjęcie od widma absorpcji zarejestrowanego w eksperymencie przyczynu od g_{RR} odrzutu dopasowanego wzorem (4.4). W części (b) pokazano wynik symulacji tego widma. W modelowaniu przyjęto temperaturę atomów $T = 64 \mu K$ odpowiadającą sytuacji doświadczalnej. Obliczone widmo jest złożeniem przyczynów odpowiadającym przejściom w pięciu ($m_g = 0$, $m_g = \pm 1$ i $m_g = \pm 2$) najsilniej obsadzonych potencjałach podpoziomów stanów zeemanowskich stanu dolnego (rysunek 5.1). Przyczynki te są ważone populacjami odpowiednich podpoziomów (rysunek 3.3 i praca [20]). Potencjały dla $m_g = \pm 3$ zostały zaniedbane jako prawie nieobsadzone. Założono, że w każdym potencjale znajduje się 10 poziomów wibracyjnych. Przyjęto na podstawie zależności z wykresu 6.5, że częstość wibracyjna najgłębszego potencjału wynosi $\omega_{vib}^{(0)} = 150$ kHz, co ze względu na skalowanie się tej częstości z głębokością potencjału według wzoru (5.17) daje $\omega_{vib}^{(\pm 1)} = 145.5$ kHz i $\omega_{vib}^{(\pm 2)} = 127.5$ kHz.

Rys. 6.4: (a) Przykładowe widmo sieciowe zarejestrowane w eksperymencie przy natężeniu wiązek pułapkujących $I_{trap} = 30 \mu W/mm^2$ i innych parametrach podanych w podpisie do rysunku 6.2, (b) krzywa wymodelowana w sposób omówiony w tekście.
6.2. Obserwacja i badanie lokalizacji atomów w sieci optycznej dla pozostałych potencjałów. Uwzględniono poprawki anharmoniczne (5.55) do częstotliwości kolejnych przejść. Szerokości najniższych poziomów wibracyjnych w potencjalach zostały przyjęte tak, aby jak najlepiej odtworzyć kształt widma \(\gamma_0 = 5 \text{ kHz} \), \(\gamma_0^{(\pm 1)} = 15 \text{ kHz} \), \(\gamma_0^{(\pm 2)} = 30 \text{ kHz} \). Szerokości te dla wyższych podpoziomów wibracyjnych skalowane były w sposób wynikający ze wzoru (5.57). Sumowano przyczynki odpowiadające pierwszej, drugiej i trzeciej harmonicznej dla każdego potencjału. Otrzymane widmo teoretyczne jakościowo dobrze odtwarza kształt widma doświadczalnego.

6.2.6 Wpływ wiązek pułapkujących na sieć optyczną

Powyżej pokazaliśmy, że całkowite obsadzenie sieci zależy od temperatury atomów w pułapce, a więc pośrednio od natężenia wiązek pułapkujących. Interesujące jest również zbadanie, jak ze zmianą tego natężenia zmienia się w widmach absorpcji położenie \(x_{\text{vib}} \), rezonansu wibracyjnego, odpowiadającego w przybliżeniu średniej częstotliwości oscylacji w sieci. Ze wzrostem natężenia wiązek pułapkujących rośnie temperatura atomów. Zwiększa się więc populacja stanów wibracyjnych o wyższych wartościach \(n \). Częstotliwości wibracyjne, ze względu na poprawkę anharmoniczną, maleją ze wzrostem \(n \) zgodnie ze wzorem (5.55). W takim razie przy zwiększaniu natężenia wiązek pułapki spodziewamy się przesuwania rezonansów sieciowych w kierunku niższych częstotliwości i zmniejszania się wartości parametru \(f_{\text{vib}} \) krzywej (6.1) dopasowanej do widm absorpcji wiązki próbkującej. Tymczasem obserwujemy efekt przeciwny do przewidywanego, jak pokazuje rysunek 6.5. To przeczące prostej intuicji fizycznej zachowanie rezonansów oscylacyjnych można zrozumieć dopiero po uwzględnieniu wpływu wiązek pułapkujących na kształt potencjału kreowanego przez wiązki sieciowe.

Rys. 6.5: Zmierna zależność częstotliwości wibracyjnej \(f_{\text{vib}} \) od natężenia wiązek pułapkujących \(I_{\text{trap}} \) wraz z dopasowanymi krzywymi teoretycznymi omówionymi w tekście. Natężenie wiązek sieciowych \(I_{\text{pump}} = 307 \mu \text{W/mm}^2 \), pozostałe parametry pracy pułapki standardowe.
Ze wzoru (5.18) wiadomo, że głębokość potencjału wytworzona przez dwie przeciwbieżne, nierezonansowe wiązki o tej samej polaryzacji jest wprost proporcjonalna do natężenia tych wiązek i odwrotnie do ich odstrzenienia od rezonansu

\[
U_0 = \frac{I_{\text{pump}}}{\Delta_{\text{pump}}}.
\] (6.4)

W przypadku, gdy atomy oddziałują dodatkowo z silnym polem pułapkującym o częstości \(\omega\), odstrojonym o niewielką wartość \(\Delta\) od przejścia atomowego, ich poziomy są przesunięte światłem w różny sposób w zależności od natężenia tego pola \(I_{\text{trap}}\). Przy założeniu atomu dwupoziomowego, częstość atomowa \(\omega'_0\) pomiędzy przesuniętymi światłem poziomami jest zwiększona względem niezaburzonej częstości \(\omega_0\) i wynosi

\[
\omega'_0 = \omega + \Omega'_{\text{trap}},
\] (6.5)

gdzie

\[
\Omega' = \sqrt{\Omega^2 + \Delta^2},
\] (6.6)

jest uogólnioną częstością Rabiego wiązek pułapkujących [77]. W takim razie w zależności od \(I_{\text{trap}}\) zmienia się odstrojenie wiązek sieciowych od rezonansu atomowego

\[
\Delta'_{\text{pump}} = \omega_{\text{pump}} - \omega'_0 \\
= \omega_{\text{pump}} - (\omega + \Omega') \\
= \omega_{\text{pump}} - (\omega_0 - |\Delta|) - \Omega' \\
= \Delta_{\text{pump}} + |\Delta| - \Omega'.
\] (6.7)

Schematycznie zmianę odstrojenia wiązek sieciowych wraz ze wzrostem natężenia wiązek pułapkujących pokazuje rysunek 6.6.

Rys. 6.6: Ilustracja rozsuwania się poziomów atomowych ze wzrostem natężenia silnego i prawie rezonansowego światła pułapki. Towarzyszy mu spadek odstrojenia wiązek sieciowych od nowej częstości atomowej \(\omega'_0\).
Podstawiając wynik (6.7) do wzoru (5.18) i korzystając z \(\omega_{\text{vib}} \propto \sqrt{U_0} \) otrzymujemy

\[
f_{\text{vib}} \propto \sqrt{\frac{I_{\text{pump}}}{\Delta_{\text{pump}} + |\Delta| - \sqrt{\Omega^2 + \Delta^2}}},
\]

(6.8)

Do punktów doświadczalnych dopasowano krzywą odpowiadającą powyższej zależności i warunkom eksperymentalnym, to znaczy \(\Delta = -3.12 \Gamma, \Delta_{\text{pump}} = 23 \Gamma \). Taka krzywa nie odtwarza dobrze zmierzonej zależności, jak widać na rysunku 6.5. Dobrą zgodność teorii z doświadczeniem uzyskano dla parametrów \(\Delta = -3.12 \Gamma \) i \(\Delta_{\text{pump}} = 1.2 \Gamma \), a więc dla odstrojenia wiązek sieciowych znacznie mniejszego, niż w rzeczywistości. Ta rozbieżność wynika z faktu, że zaprezentowane powyżej podejście, w którym niezależnie traktuje się pole pułapkujące i pole wiązek sieciowych, jest zbyt dużym uproszczeniem. Z kolei teoria, w której oblicza się energie poziomów atomu zaburzanego dwoma silnymi polami jest dla ogólnego przypadku dowolnych odstrojen i częstości Rabiiego pól zaburzających bardzo skomplikowana i wykraca poza zakres tej pracy. W publikacji [82] rozważane są dwa szczególne przypadki ujawniania atomu dwoma polami, gdy oba pola mają to samo odstrojenie lub tę samą częstość Rabiiego. W przeciwieństwie do atomu zaburzanego jedynym silnym polem [77], dla dwóch pól otrzymuje się cały szereg poziomów atomowych, w różny sposób przesuniętych światłem. W ten sposób można wytłumaczyć fakt, że odstrojenie uzyskane jako parametr dopasowania na z rysunku 6.5 ma wartość znacznie mniejszą od wyznaczonej w nieobecności pola pułapkującego.

Prezentowane tu rozumowanie ma charakter wyłącznej jakościowy, a ścisłe rozumienie zagadnienia wymaga skomplikowanych obliczeń. Należy uwzględnić w nich również zmienną obsadzenia kolejnych poziomów wibracyjnych ze zwiększania temperatury atomów wraz ze wzrostem natężenia wiązek pułapkujących. Ten efekt został jakościowo potwierdzony przez porównanie amplitud pierwszej i drugiej harmonicznej w widmach z rysunku 6.3 (b).

6.3 Podsumowanie

W niniejszym rozdziale przedstawione zostały widma świadczące o występowaniu sieci optycznych w pułapce magnetooptycznej, do której wprowadzono liniowo spolaryzowaną falę stojącą odstrojoną ku wyższym częstotliwościami. W pośrednim zakresie temperatur pułapki magnetooptycznej zaobserwowano współistnienie dwóch frakcji atomów, swobodnej i silnie zlokalizowanej w sieci optycznej. Korzystając z prostej teorii sieci dokonano modelowania widma wiązki próbkującej oddziaływujące ze zlokalizowanymi atomami i otrzymano zgodność widm teoretycznych z danymi eksperymentalnymi. Przebadano również zachowanie rezonansów oscylacyjnych ze zmianą natężenia wiązek pułapkujących i stwierdzono wpływ pola światelnego pułapki magnetooptycznej na głębokość mikropotencjałów sieci.

Współistnienie zlokalizowanej i swobodnej frakcji atomów, jak również wpływ pola światelnego pułapki magnetooptycznej na kształt i głębokość mikropotencjałów sieci optycznej to atrakcyjne zagadnienia, które dotychczas nie były teoretycznie analizowane. Pomiary przedstawione w niniejszej pracy pokazują, że efekty takie można
w sposób dokładny badać eksperymentalnie. Dobra zgodność jakościowa prostych modeli teoretycznych z obserwacjami eksperymentalnymi przekonuje o właściwej interpretacji zjawisk zachodzących w eksperyencie. Poprawa tej zgodności może zostać osiągnięta jedynie przez ścisły opis teoretyczny, dotyczący w szczególności analizy potencjału sieci optycznej dla atomów zaburzanych jednocześnie wiązkami pułapkującymi.
Podsumowanie

Niniejsza praca wpisuje się w cykl prac Zakładu Fotoniki [19, 20], dotyczących badań spektroskopowych atomów w pułapce magnooptycznej. Wykorzystano w niej, podobnie jak w pracy [20] spektroskopię ramanowską o ultrawysokiej zdolności rozdzielczej, skupiając się na badaniu ruchu atomów w pułapce magnooptycznej. Taką zdolność rozdzielczą osiąga się poprzez zastosowanie wzajemnie sprzężonych laserów. Dzięki zastosowaniu w spektroskopii wiązek laserowych, które w odróżnieniu od [19, 20] są odstronne daleko od rezonansu atomowego, możliwe stało się spektralne rozseparowanie rezonansów związanych z wewnętrznymi i zewnętrznymi stopniami swobody atomu. Spektroskopia ramanowska daleko od rezonansu nie tylko otworzyła nowe możliwości badawcze, wykorzystane w tej pracy, ale przez duże odstronne wiązek spektroskopowych sprawiła, że można było badać atomy we włączonej pułapce bez ich zaburzania. W tym sensie atomy badane w tej pracy poddane są tym samym warunkom eksperymentalnym jak w pracach [19, 20].

Aby porównać pomiary przeprowadzone w tej pracy z pomiarami z prac [19, 20], na rysunku 6.7 przedstawiono widmo absorpcji atomów w pułapce magnooptycznej i zaznaczono obszary spektralne badane w poszczególnych pracach.

![Rys. 6.7: Widmo absorpcji atomu w pułapce magnooptycznej z zaznaczonymi obszarami spektralnymi badanymi w cytowanych w niniejszym paragrafie pracach. Niniejszą pracę oznaczono przez [MB].](image)

Spektroskopia ramanowska daleko od rezonansu umożliwia otrzymanie wyraźnych sygnałów odrzutu, związanych z pojedynczymi aktami przekazu pędu. Warto porównać ten aspekt pomiarów z faktem, że do całkowitego zatrzymania atomu rubidu potrzeba około 50000 aktów przekazu pędu od wiązek pułapujących. Sygnały odrzutu, które są bezpośrednio związane z rozkładem prędkości atomów w pułapce,
stanowią bardzo wygodne narzędzie diagnostyczne. W niniejszej pracy, korzystając z omówionych w części teoretycznej własności sygnałów odrzutu, wyznaczono w sposób niedestruktywny rozkład prędkości atomów w pułapce magnetooptycznej a w sytuacji równowagi termodynamicznej również ich temperaturę. Zarejestrowano i dokonano analizy rezonansów odrzutu przy zmianach podstawowych parametrów pracy pułapki magnetooptycznej, takich jak natężenie i odstrojenie wiązek pułapkujących, natężenie wiązki repompującej i gradient kwadrupolowego pola magnetycznego. Tym sposobem nie tylko zgromadzono bogaty materiał doświadczalny pokazujący charakter zmian temperatury w zależności od warunków pułapkowania atomów, ale wykazano także uniwersalność metody rezonansów odrzutu i możliwość jej stosowania przy bardzo szerokich zmianach parametrów pułapki. Jednym z najciekawszych aspektów niniejszej pracy jest zmierzenie anizotropii rozkładu prędkości w pułapce z nierównowagowym podziałem natężeń wiązek pułapkujących. Jest to pierwsza obserwacja doświadczalna tego zjawiska, częściowo przewidzianego teoretycznie w pracy [69].

Ponadto, wykorzystując nierezonansowe, odstrojone w stronę wyższych częstotliwości wiązki spektroskopii ramanowskiej, wytworzono w pułapce magnetooptycznej jednowymiarową sieć optyczną. Atomy zlokalizowane w takiej sieci współistnieją z termiczną chmurą swobodnych atomów pułapki magnetooptycznej. Skwantowany ruch atomów w sieci optycznej był badany jednocześnie z ruchem atomów swobodnych dzięki możliwości jednoczesnej rejestracji sygnałów odrzutu i rezonansów związanych z przejściami wibracyjnymi w sieci optycznej. W ten sposób wykazano bezpośredni wpływ pola świetlnego pułapki na głębokość studni mikropotencjałów sieci.

Interpretacja teoretyczna otrzymanych w pracy wyników w większości przypadków daje na ogół bardzo dobrą zgodność przewidywań i danych doświadczalnych. W szczególności odpowiedni dobór polaryzacji wiązek ramanowskich pozwolił zredukować problem atomu o strukturze wielu podpoziomów zeemanowskich do opisu w ramach modelu atomu dwupoziomowego. Pomimo wspomnianej zgodności teorii i doświadczenia, wyniki niniejszej pracy wskazują na konieczność stworzenia dokładnego opisu teoretycznego pewnej części obserwowanych zjawisk. Przede wszystkim, wyniki teoretyczne pracy [69], zakładające uproszczony schemat przejścia pułapkującego, powinny zostać uzupełnione o mechanizmy chłodzenia subdopplerowskiego, których istnienie jest najbardziej prawdopodobną przyczyną rozbieżności danych doświadczalnych i krzywych teoretycznych. Wyjaśnienia teoretycznego wymaga też zachowanie sieci optycznych pod wpływem pola pułapkującego. Prosty model, w którym oddziaływanie atomów pułapki wiązkami pułapkującymi i wiązkami sieciowymi traktowane jest niezależnie, daje jedynie zgodność jakościową. Wreszcie bogaactwo widm ramanowskich rejestrowanych dla różnych polaryzacji wiązek diagnostycznych (Dodatek A) wymaga opisu teoretycznego z uwzględnieniem pełnej struktury podpoziomów zeemanowskich atomu rubidu. Widać więc, że dzięki jednoznaczemu i wyraźistemu charakterowi dokonanych obserwacji wyniki zebrane w niniejszej pracy mogą stać się podstawą do udoskonalenia istniejących modeli teoretycznych.
Przedstawione w niniejszej pracy rezonanse odrzutu i widma przejść ramanowskich w sieciach optycznych standardowo rejestrowane były przy jednakowo spolaryzowanych wiązkach pompujących i wiązce próbkującej. W takim przypadku przejścia ramanowskie zachodzą bez zmiany magnetycznej liczby kwantowej m_F. Można zatem rozpatrywać wielopoziomowy atom rubidu jako zbiór niezależnych atomów dwupoziomowych, dzięki czemu otrzymane widma mają stosunkowo prostą interpretację i mogą być opisane łatwymi zależnościami teoretycznymi. Jest to bardzo korzystne przy wyznaczaniu rozkładu prędkości atomów z dopasowania wyprowadzonej przy założeniu atomu dwupoziomowego zależności (4.1). Ponadto, fala stojąca wytworzona przez dwie jednakowo spolaryzowane przeciwbieżne wiązki pompujące stanowi najprostszy wariant jednowymiarowej, niedysympatycznej sieci optycznej. Własności atomów w takiej sieci, próbkowanych wiązką o tej samej co pompy polaryzacji, również mogą być opisane w ramach modelu atomu dwupoziomowego. Jednak niemniej interesującym zagadnieniem jest sprawdzenie, jak rejestrowane sygnały zależną od polaryzacji wiązek indukujących przejścia ramanowskie.

W opisywanym w tej pracy eksperymentie standardowo wykorzystywano poziomą polaryzację liniową, otrzymując omawiane wcześniej sygnały odrzutu i widma sieciowe. W celach porównawczych przykłady takich widm zostały przedstawione na rysunkach A.1 (a) i (c) wraz ze schematem konfiguracji wiązek diagnostycznych. Jeśli polaryzacja wszystkich wiązek diagnostycznych zostanie zmieniona na kołową o tej samej skrętości, widma nie powinny się zmienić w stosunku do widm (a) i (c). Przejścia są wciąż indukowane bez zmiany liczby m_F, a więc przybliżenie dwupoziomowe jest nadal spełnione. Widma takie przedstawiono na rysunkach A.1 (b) i (d). Widać, że jakościowo odpowiadają widmom (a) i (c). Różnicę stanowią wolniej zdarzające do zera skrzydła krzywych dyspersyjnych i mniejsza względna amplituda rezonansów sieciowych. Tę różnicę można wyjaśnić niedoskonałością polaryzacji kołowej otrzymanej w eksperymentie – wiązki polaryzowane liniowo po przejściu przez płytę ćwierćfalową są doprowadzane do oddziaływania z chmurą atomów lustrami o różnych współczynnikach odbicia dla składowej stycznej i prostopadłej. W wyniku tego polaryzacje kołowe stają się zanieczyszczone liniową domieszką, dla której mogą się pojawiać wpływy koherencji zeemanowskich. Mimo wspomnianych różnic, zgodność jakościowa widm dla polaryzacji liniowych i kołowych jest satysfakcjonująca.

Rysunek A.1 (e) przedstawia sytuację, w której wszystkie wiązki są spolaryzowane liniowo, przy czym polaryzacja pompy prawie współbieżnej z wiązką prób-
Rys. A.1: Widma absorpcji zarejestrowane przy różnych polaryzacjach wiązek pompujących i wiązki próbkującej. Wiązki pompujące zaznaczone są grubymi, ciemnoszarymi strzałkami (brak wypełnienia strzałki oznacza brak wiązki w tym kierunku). Wiązka próbkująca została zaznaczona jasnoszary strzałką. Na rysunkach pominięto mały kąt, jaki w rzeczywistości tworzą ze sobą prawie współbieżne wiązki diagnostyczne. Parametry pułapki: $I_{\text{trap}} = 40 \, \mu\text{W/mm}^2$, $\Delta = -3.12\Gamma$, $\partial_z B = 12.2$ Gauss/cm, $I_{\text{pump}} = 300 \, \mu\text{W/mm}^2$.
kującą jest ortogonalna do pozostałych (tzw. konfiguracja \(\text{lin} \perp \text{lin} \), [79, 68]). Pole wypadkowe pochodzące od wiązek pompujących ma stałe natężenie, lecz jego polaryzacja jest zmudolowanana przestrzennie, przechodząc okresowo od kołowej przez eliptyczną do liniowej. W tak zmudolowanym polu dla poruszających się atomów wielopoziomowych występuje efekt Syzyfa [68], wiązany z dyssympacją energii kine-
tycznej przez cykliczne akty przepompuwania optycznego. Wystarczającego spowo-
lone atomy gromadzą się w minimach mikropotencjałów, tworząc sieć optyczną. Mimo to w widmie A.1 (e) przyczynek od sieci optycznych jest niewidoczny. Wi-
dać tylko szeroki rezonans odrzutu, pochodzący od oddziaływania dwóch prawie
przeciwbieżnych wiązek pompującej i próbki oraz wiązek pompujących,
诘ma polaryzacji wiązki próbki przez liniowaną poziomą na pionową (widmo A.1 (k))
również nie prowadzi do rejestracji przyczynku sieciowego, choć widmo zmienia się
zasadniczo w porównaniu z przypadkiem (e). Widać na nim wąski rezonans odrzutu
pochodzący od prawie współbieżnych pomp i próbki o tej samej polaryzacji. Re-
zonansowi odrzutu towarzyszy szerzy sy rezonansy rezonansowe, również o charakterze pochodzi
żygaussowskiego rozkładu prędkości, ale wyróżnia szerszy niż w przypadku widma (a), (b) i (e). Warto zauważyć, że taki sam szeroki rezonans rejestrujemy w konfiguracji
przedstawionej na rysunku A.1 (d), kiedy to z atomami oddziałują spolaryzowane
ortogonalnie liniowo, prawie przeciwbieżne pompa i próbka. Różnica w szerokościach
rezonansów z rysunków (a) i (g) wynika z faktu, że o ile w przypadku (a) pompa i
próbka indukowały przejścia z \(\Delta m_F = 0 \), a więc rozpoczynały się i kończące
w tym samym stanie wewnętrznym atomu, o tyle te same wiązki, ale spolaryzowane
ortogonalnie (liniowo), indukują przejścia z \(\Delta m_F \neq 0 \). Podpoziomy zeemanowskie o
różniących się od siebie liczbach \(m_F \) mają niezerowe względne przesunięcie pocho-
dzące od oddziaływania zarówno z polem wiązki pompującej, jak i wiązki pułap-
kujących. Związana w tym przesunięciu zmiana częstości rezonansowej przejścia
ramanowskiego sprawia, że sygnały odrzutu ulegają obserwowanemu poszerzeniu.
Uwagę zwraca fakt, że jeśli widzimy rezonans odrzutu dla prawie przeciwbieżnych i
spolaryzowanych ortogonalnie liniowo wiązek pompującej i próbki, powinniśmy
obszaru widma (e) dla małych odstrojeń (rzędu 200 kHz) widzimy, że występuje tam mała struktura dyspersyjna, która może być po-
wszechieć rezonansem, tyle, że o bardzo małej amplitudzie. Wyjaśnienie wielkości
jej amplitudy pozostaje poza obszarem mniejszej dyskusji jakościowej kształtu ob-
serwowanych widm i niewątpliwie stanowi ciekawe zagadnienie teoretyczne.

Komentarza wymaga brak spodziewanego przyczynku sieciowego w widmach (e)

i (k). Sieci optyczne wynikające z konfiguracji pola pompującego (e) i (k) charak-
teryzują się dużą gęstością potencjału przede wszystkim dla stanów \(m_F = \pm 3 \)
\((U_0 \propto 0.9 I_{\text{pump}})\) i \(\pm 2 (U_0 \propto 0.65 I_{\text{pump}}) \). Z wielu obserwacji spektroskopowych wy-
nika, że atomy w pułapce najliczniej obsadzają stan \(m_F = 0 \), co wynika z pom-
powania optycznego przez wiązki pułapkujące. Dla tego stanu mikropotencjał sieci
optycznej jest już bardzo płytki \((U_0 \propto 0.21 I_{\text{pump}})\). W takim potencjałe atomy o tem-
peraturach wynikających z chłodzenia subdopplerowskiego we włączonej pułapce nie
mogą być już ekstremalnie lokalizowane, stąd brak w widmach przyczynku sieciowego
o nieznaniedbywalnej amplitudzie. Konfigurację sieci optycznej (e) i (k) próbkowano

\[^{1}\text{Sytuacja } U_0 \propto I_{\text{pump}} \text{ odpowiada atomowi dwupoziomowemu w polu o 100% modulacji natę-
żenia światła.}\]
również wiązką spolaryzowaną kołowo prawo- i lewoskrętnie - w żadnym z przypadków nie zarejestrowano charakterystycznych rezonansów oscylacyjnych.

Ciekawy przykład stanowi widmo przedstawione na rysunku A.1 (i). W konfiguracji dwóch przeciwbieżnych wiązek pompujących o jednakowej polaryzacji liniowej na pewno powstaje się optyczna - dowodem na to jest na przykład widmo (c). Widmo (i) pokazuje, że próbując taką wiązkę spolaryzowaną ortogonalnie do pompujących, nie otrzymuje się rezonansów wibracyjnych, a jedynie szeroki sygnał dyspersyjny, taki jak w przypadku widm (g) i (k). Ten efekt, tak jak poprzednio, związany jest z występującymi w tej konfiguracji polaryzacyjnej przejściami z $\Delta m_F \neq 0$.

W przypadku przeciwbieżnych wiązek pompujących o ortogonalnych polaryzacjach kołowych (tzw. konfiguracja $\sigma^+ - \sigma^-$, [83, 68]) otrzymujemy wypadkowe pole elektryczne w postaci wektora \mathbf{E}, $E = \text{const.}$, którego kierunek zależy od współrzędnej przestrzennej. Takie pole może spowalniać atomy, ale nie prowadzi do ich lokalizacji. Rzeczywiście, widmo A.1 (f) nie wykazuje przyczynki sieciowej. Jeśli atomy oddziałujące z polem wypadkowym w konfiguracji $\sigma^+ - \sigma^-$ próbowane są wiązką o polaryzacji kołowej zgodnej z polaryzacją współbieżnej wiązki pompującej, generowany jest sygnał pokazany na rysunku A.1 (l). Składa się on z szerokiego rezonansu dyspersyjnego (podobnie jak w przypadkach (g), (i) i (k)) oraz z wąskiego sygnału odrzutu, pochodzącego od prawie współbieżnych wiązek o tej samej polaryzacji.

Brak generacji sygnału ramanowskiego obserwuje się gdy pole świetlne wytwarzane przez wiązki pompujące ma polaryzację kołową o skrętności przeciwnej do kołowo spolaryzowanej wiązki próbującej (wykresy (h) i (j)). W takiej konfiguracji teoretycznie powinny zachodzić przejścia ramanowskie z $\Delta m_F = \pm 2$, tymczasem obserwuje się jedynie bardzo słabo widoczną zależność dyspersyjną, która wynika jednak raczej z niedoskonałej polaryzacji kołowej niż z procesu o malej amplitudzie.

Powyższe rozważania można podsumować następująco:

- Wiązki pompująca i próbująca o tej samej polaryzacji zawsze generują sygnał odrzutu, zarówno gdy są prawie współbieżne (wąski rezonans) jak i prawie przeciwbieżne (szeroki rezonans).
- Sieci optyczne zaobserwowano w pułapce tylko w przypadku wiązek pompujących o jednakowej polaryzacji (liniowej bądź kołowej). Nie obserwowano sieci w konfiguracjach $\text{lin} \perp \text{lin}$ oraz $\sigma^+ - \sigma^-$.
- Wiązka próbująca, której jedyną składową polaryzacji jest składowa ortogonalna do wiązec tworzących, nie rejestruje rezonansów wibracyjnych.
- Sygnał ramanowski nie jest generowany w przypadku pola pompującego o polaryzacji kołowej przeciwnej do polaryzacji wiązki próbującej. Jest natomiast generowany, gdy polaryzacje pola pompującego i próbki są liniowe i ortogonalne.
- W przypadku niejednakowych polaryzacji pomp i próbki, poszerzenie rezonansów wynika z przejść ramanowskich z $\Delta m_F \neq 0$.

Część powyższych efektów, jeśli nawet posiada zadawalającą interpretację jakościową, wymaga szczegółowej analizy teoretycznej. W szczególności potrzebna jest
ona w przypadkach, w których mamy do czynienia z przejściami z \(\Delta m_F \neq 0 \). W ich przypadku znaczącą rolę mogą odgrywać efekty koherencji pomiędzy podpoziomami zeemanowskimi atomów. Niniejsza praca skupia się jednak na analizie i wykorzystaniu efektów oddziaływania atomu z polami o jednakowej polaryzacji, gdzie efekty związane z koherencjami zeemanowskimi nie występują.
Makroskopowa obserwacja ruchu atomów

W niniejszej pracy ruch atomów w pułapce badany był metodami spektroskopii ramanowskiej. Pozwala ona na zmierzenie szerokości rozkładu prędkości w pułapce oraz na wyznaczenie częstości skwantowanych oscylacji w mikropotencjalach sieci optycznej. Ruch zimnych atomów może być również obserwowany w sposób makroskopowy. Prędkości spowolnionych atomów są rzędu kilku cm/s, co sprawia, że można je rejestrować standardowymi kamerami wideo o częstotliwości przechwytywania obrazu 25 Hz. Ruch atomów obserwuje się po uwolnieniu ich z pułapki, co następuje po wyłączeniu kwadrupolowego pola magnetycznego. Wiązki pułapkujące i repompująca nie są wyłączane, dzięki czemu atomy są ciągle wzbudzane i emitują światło.

Rys. B.1: Izotropowa ekspansja chmury zimnych atomów po wyłączeniu pola magnetycznego w chwili \(t_0 = 0 \) ms. Wiązki pułapkujące przecinają się centralnie w punkcie zerowania się kwadrupolowego pola magnetycznego. \(I_{\text{trap}} = 250 \mu \text{W/mm}^2, \Delta = -3.12 \Gamma, \partial_z B = 12.2 \text{ Gauss/cm.} \)

W idealnym przypadku, gdy wiązki pułapkujące przecinają się centralnie w punkcie, w którym pole magnetyczne wynosi zero, po uwolnieniu atomów z pułapki obserwuje się izotropową ekspansję chmury atomowej, tak jak pokazuje to rysunek B.1. Jeśli punkt przecięcia się wiązek nie pokrywa się z zerem kwadrupolowego pola magnetycznego, po uwolnieniu atomów z pułapki obserwuje się ich szybką ucieczkę w kierunku wynikającym z nierównowagi ciśnienia promieniowania. Izotropowa ekspansja jest zatem jednym z wyznaczników optymalnego w sensie geometrycznym wyjustowania pułapki.

O wiele ciekawsze efekty obserwuje się, gdy w obszarze chmury atomowej wiązki pułapkujące zostaną przesunięte względem siebie tak, jak pokazuje rysunek B.2. W takiej konfiguracji siły ciśnienia promieniowania nie są już zrównoważone. Wynikająca z braku równowagi para sił sprawia, że po ekspansji atomy zaczynają poruszać się po zakrzywionych trajektoriach, co pokazuje rysunek B.3. W zależności od wzajemnego przesunięcia wiązek pułapkujących mamy do czynienia z formowaniem się

Rys. B.3: Ekspansja chmury zimnych atomów po wyłączeniu pola magnetycznego w chwili \(t_0 = 0 \) ms przy małym (górna część rysunku) i dużym przesunięciu wiązek pułapkujących. \(I_{\text{trap}} = 250 \, \mu \text{W/mm}^2, \Delta = -3\Gamma, \partial_z B = 12.2 \, \text{Gauss/cm}. \)

Stabilnych orbit kołowych atomów (małe przesunięcia, góra część rysunku B.3), z powolną ekspansją po spiralnych orbitach (średnie rozsunięcia) lub z wyrzucaniem atomów z pułapki w postaci spiralnych strumieni (duże rozsunięcia, dolna część rysunku B.3). Warto zauważyć, że mimo przesunięć wiązek, nawet takich jak w ostatnim przypadku, chmura atomowa przed ekspansją była stabilna i nie różniła się od chmury przy optymalnym wyjustowaniu.

Efekty związane z powstawaniem zakrzywionych trajektorii zimnych atomów można obserwować również w spułapkowanej, nie ekspandującej chmurze atomowej. Przy obniżaniu gradientu pola magnetycznego i w obecności dyskutowanego powyżej przesunięcia wiązek pułapkujących, formują się struktury takie, jak pokazano na rysunkach B.4. Widać na nich orbitę kołową (rysunek B.4 (a)) lub dwie koncentryczne (rysunek B.4 (b)). Orbity te otaczają centralnie położoną małą chmurę zimnych atomów, która, w zależności od gęstości atomów, stopnia przesunięcia wiązek pułapkujących i ich natężenia może znikać.
Rys. B.4: Przestrzenne struktury powstające w pułapce magneto-optycznej w konfiguracji przesuniętych względem siebie wiązek pułapkujących dla słabego kwadrupolowego pola magnetycznego. Zdjęcia (a) i (b) odpowiadają innym wartościom względnego przesunięcia wiązek pułapkujących. $I_{\text{trap}} = 250 \, \mu\text{W/mm}^2$, $\Delta = -3\Gamma$, $\partial_z B = 2 \, \text{Gauss/cm}$.

Przedstawione powyżej obserwacje mają wyłącznie charakter jakościowy. Ich rejestracja została przeprowadzona przy okazji justowania pułapki magneto-optycznej. Analiza i interpretacja dyskutowanego powyżej zachowania chmury atomowej nie jest celem niniejszej pracy. Zgodnie z naszą wiedzą struktury prezentowane na rysunku B.3 nie były opisane w literaturze. Natomiast struktury przedstawione na rysunku B.4 obserwowano już wcześniej m.in. w pracach [84]-[89]. Wykazano, że za ich formowanie oprócz niezrównoważonego ciśnienia promieniowania\(^1\) odpowiedzialna jest siła pochodząca od uwięzienia promieniowania, działająca w kierunku ekspansji chmury, w analogii do sił coulombowskiej w zespole jednoimiennie naładowanych cząstek. Te zjawiska wyznaczają graniczne wartości gęstości i temperatury jakie można osiągnąć w pułapkach magneto-optycznych [85].

\(^1\)Nierównowaga ta wynika zarówno z wzajemnego przesunięcia wiązek pułapkujących i ich osłabienia po przejściu przez gęstą chmurę zimnych atomów.
Bibliografia

[70] M. Gajda, *Dyskusja prywatna*.

