Research projects

The projects conducted in the Photonics Deaprtment are financed both by the national institutions, like the National Science Center, and by the international ones, like EU or NATO. Below, we present the recently realized projects and grants. 

Details about the particular project can be accessed after clicking on the title of the project.

 

Projekty międzynarodowe/International projects

  • 2024 - 2027 Advanced Quantum Sensing with Nanodiamonds (AQuSeND) 2023/05/Y/ST3/00135 (QuantERA)
    Kierownik: dr hab. Adam Wojciechowski
    Źródło finansowania/Financial source: QuantERA/NCN
    Opis projektu:

    English abstract below

    [PL]

    Projekt AQuSeND ma na celu opracowanie nowych protokołów detekcji kwantowej z użyciem ND. Naszym celem jest pokazanie wielotorowych technik detekcji (np. jednoczesnej detekcji zmian temperatury i zawartości jonów) z użyciem tych nanoskalowych obiektów. Techniki te są analogiczne do wykorzystywanych z makroskopowymi diamentami, przez co znacznie rozszerzymy możliwe zastosowania ND. Aby to osiągnąć, projekt łączy podejścia eksperymentalne i teoretyczne w celu zbadania właściwości takich układów, poprawy właściwości materiałowych ND i wydajności stosowanych protokołów oraz opracowania nowego zakresu ich praktycznych zastosowań. 

     

    [EN]

    The AQuSeND project aims to develop new quantum detection protocols using NDs. Our goal is to demonstrate multi-channel detection techniques (e.g., simultaneous detection of temperature changes and ion content) using these nanoscale objects. These techniques are analogous to those used with macroscopic diamonds, thereby significantly expanding the potential applications of NDs. To achieve this, the project combines experimental and theoretical approaches to investigate the properties of such systems, improve the material properties of NDs and the efficiency of the applied protocols, and develop a new range of their practical applications.

  • 2022 - 2025 Microfluidics Quantum Diamond Sensor (Mf-QDS) 2021/03/Y/ST3/00185 (QuantERA)
    Kierownik: dr Adam Wojciechowski
    Źródło finansowania/Financial source: QuantERA Call 2021 - NCN
    Opis projektu:
    The field of microfluidics has witnessed rapid growth in the recent years, and it is now ubiquitous in areas as diverse as biology, medicine, and chemistry. Today, microfluids are a paramount resource in blood testing, printing, and fuel cells, to cite but a few. The ability to estimate the main microfluid properties is crucial for the drug industry and in medicine where, for example, detection of free radicals in biological samples is critical to understanding processes such as the immune response.
    The most widespread platform, which has contributed to the greatest extent to the development of microfluidics is the Lab on a Chip approach to chemical and biological analysis. Since chips contain microfluid channels and integrated analysis tools, it is vital to have precise control over the physics of fluids in these microchannels. However, accumulating evidence has shown that the flow in these channels does not always obey macroscopic fluid laws, such as the no-slip boundary condition usually taken for granted when characterizing fluid properties. Though there have been advances in microscopic theory, a technology to accurately measure velocity has not yet been developed.
    This project presents a radically different approach to the measurement of velocity and diffusion properties in microfluid channels. Based on shallow Nitrogen Vacancy (NV) centers implanted in a diamond matrix positioned sufficiently close to the flowing liquid, we will use nano-NMR techniques to detect the statistical field produced by the nuclei in the vicinity of the NV. As the molecules flow through the channel, the magnetic noise induced in the NV fluctuates. Tracking these fluctuations as changes in the NV state will provide an unprecedented level of accuracy in terms of the velocity flow profile of the microfluid and its temperature, while making it possible to differentiate between several component species. None of these parameters can be achieved with current classical methods although they are vital for the next generation of microfluidic devices. We will design and implement an integrated tool containing the diamond with the NVs and microfluidic channels that can be exported to any microfluidic device, and provides a state of the art resolution capacity.
  • 2021 - 2024 Advanced optical magnetometry of vortices in unconventional... 2020/39/I/ST3/02322 (OPUS LAP)
    Kierownik: dr Adam Wojciechowski
    Źródło finansowania/Financial source: NCN
    Opis projektu:

    This project will be realized in collaboration between two groups at the Jagiellonian University in Kraków and at the Jožef Stefan Institute in Ljubljana. It aims at the joint study of cutting-edge problems in superconductivity using modern optical magnetometry techniques. This ambitious research is enabled by the synergy and complementing knowledge of both teams.

    We will use diamonds with nitrogen-vacancy colour centres, which are typically responsible for rose diamond colouring, as sensors for probing magnetic fields generated by the superconducting samples with a high-sensitivity and in a very detailed way. In particular, we will use with colour-centres’ spins inside nanodiamonds to achieve nanometric spatial resolution that will enable us to observe vortices in the superconductor. Our goal is to develop novel type of instrumentation that will foster versatile and robust optical magnetometry as an alternative approach for studies of condensed-matter systems at cryogenic temperatures.

    Our scientific motivation stems from the existence of many fundamental open-questions in the physics of unconventional superconductors, that is recently discovered materials in which superconductivity cannot be explained by the well-established BCS and Bogoliubov theories. For example, we will study properties of, so-called, topological superconductors (like β-PdBi2) and quasi-1D superconductors (A2Mo3As3, here A is an alkali metal). We are interested in imaging the presence of vortices and observing their so-called pinning and transitioning to a dynamic behaviour. In this way, we will determine vortex matter excitation spectrum and it will allow us to address the major open question on the origin of the Cooper pairing mechanisms in such unconventional superconductors. Finally, we anticipate this project will also shed some light onto the possibilities for practical applications of unconventional superconductors.

  • 2018 - 2021 Zero and Ultra-Low Field NMR Innovative Training Network Horizon 2020 ITN 766402
    Kierownik: dr hab. Szymon Pustelny
    Źródło finansowania/Financial source: European Union Horizon 2020
    Opis projektu:
     
     
    The goal of the European Training Network (ETN) ZULF is to develop, explore and apply methods of nuclear magnetic resonance (NMR) in the regime of zero and ultra-low magnetic fields (ZULFs). In contrast to conventional NMR, under such experimental conditions, the dynamics of nuclear systems is determined by intra- and intermolecular interactions and not by interaction with external magnetic fields. The project will be realized by a group of dedicated earlystage researchers (ESRs), who, through inter-disciplinary training and crosssectoral research activities, will combine results of several rapidly developing yet largely separated areas of modern science to provide NMR with new capabilities. The characteristics of the research programme are unique not only at the European but also global level. Therefor ETN ZULF will pursue a novel training scheme, combining the experience of world-leading experts in diverse fields and disciplines.
     
     
  • 2016 - 2018 Highly sensitive diamond and carborundum nano-sensors and bio-... ERA.Net RUS Plus
    Kierownik: prof. dr hab. Wojciech Gawlik
    Źródło finansowania/Financial source: UE
    Opis projektu:

    2016-2018 projekt EU ERA.Net RUS Plus S&T

     

    Highly sensitive diamond and carborundum nano-sensors

    and bio-markers with NIR optical addressability

    Celem projektu są badania doświadczalne zmierzające do rozwoju:

       1 ) metod mikrofalowej i optycznej spektroskopii centrów barwnych

       2 ) hybrydowych czujników wykorzystujących mikrostrukturalne włókna optyczne

       3 ) sposobów charakteryzacji nanokrystalitów diamentowych otrzymywanych metodą PE MW CVD

     

     W badaniach zmierzających do rozwoju nowych metod obrazowania biomedycznego stosujemy próbki diamentowe oraz diamentopodobne zawierające paramagnetyczne centra barwne. Odpowiednie promieniowanie optyczne wzbudza te centra  i kreuje w nich polaryzację spinową, która jest następnie badana metodami spektroskopii mikrofalowej (ESR) i optycznej.

     

    Dodatkowych informacji udziela prof. dr hab. Wojciech Gawlik

     

     

    2016-2018 projekt EU ERA.Net RUS Plus S&T

     

    Highly sensitive diamond and carborundum nano-sensors

    and bio-markers with NIR optical addressability

     

          The project’s aims at development of:

          1 ) novel methods of microwave and optical spectroscopy of colour centers in diamond

          2 ) hybrid photonic sensors based on microstructured optical fibres

          3 ) characterization of diamond nanocrystals obtained with the PE MW CVD method

     

    In our project which aims at development of novel methods of bio-medical imaging we work with diamond and diamond-like samples containing paramagnetic colour centres. Appropriate optical radiation excites      the samples and creates their spin polarization, which is investigated by microwave and optical spectroscopy.

     

    For additional information please contact with prof. Wojciech Gawlik

     

     

     

     

  • 2012 - 2014 Central European Network for knowledge based on Innovative Light... CENTRAL EUROPE project 4CE514CE517P1
    Kierownik: Giovanni De Ninno (Elettra - Sincrotrone Trieste, Italy)
    Źródło finansowania/Financial source: Operational Programme CENTRAL EUROPE
    Opis projektu:

    Innovative light sources (ILS’s), are among the most powerful tools for exploring the inner properties of matter. The knowledge of matter’s properties allows in turn to envisage novel applications in a large variety of scientific and technological fields. Centres hosting ILS’s are crossroads between fundamental science, state-of-the-art technology, high-level education and training, and business sectors. Therefore they provide a formidable environment for human capital development. Considering the Programme Area covered by the Central Europe initiative, one can notice that not all the participating regions are presently able to take full advantage of the great potential offered by the development and use of ILS’s. A further important issue that the project will address is the current lack of tight connection between research and industrial applications relying on ILS’s. As a general objective, the project aims at exploiting the knowledge generated by ILS’s for fostering human capital in the whole Programme Area. Project’s actions will contribute to strengthen territorial cohesion, enhancing the competitiveness of less favoured regions. In this respect, project’s implementation will contribute to fill the gap between different countries of the Programme Area, by favouring new regional innovation systems in all involved Regions. 


    Project’s specific objective is to create a transnational network of universities, laboratories and business entities, which will promote an effective use and a rational development of ILS’s in the Central Europe Programme Area. Centres hosting ILS’s have an inborn transnational vocation: the design, construction and use of an ILS are indeed always the result of international collaborations. Therefore, the achievement of the project’s specific objective requires a trans-national approach. Project's partnership involves two laboratories (Sincrotrone Trieste, Italy; Max Planck Institute, Germany), two universities (University of Nova Gorica and University of Krakow), a public foundation for the development of industry (IFKA, Hungary) and a private institute gathering experts in regional development, innovation and education (ERA, Czech Republic). Sincrotrone Trieste and Max Planck have worldwide recognized expertises in developing and using ILS’s. Sincrotrone Trieste (project’s LP) has an outstanding experience in leading international projects. The universities of Nova Gorica and Krakow are building new centres based on the use of ILS’s. The partners IFKA and ERA will contribute to insure application and transfer of knowledge based on the development and use of ILS’s. The project will develop through five WPs. The WP1 and WP2 will focus, respectively, on project management and communication. In the framework of WP3, a survey of the state-of-the-art of ILS’s in the whole  Programme Area will be carried out.


    The outcome of this investigation will allow to select a "Principal Target Group" (PTG), made of scientists, engineers, technicians, entrepreneurs, students and professors coming from all Central-Europe Regions. The training of the PTG will take place through the pilot actions that will be carried out within WP4. The latter will combine the cutting-edge of science and technology, and will be tightly connected to industrial applications. The results of pilot actions will be exploited by the project's partners and the PTG in the framework of WP5 (data analysis and publication, preparation of proposals to gain access to the use of beamtime of ILS’s available at partners’ laboratories). Two workshops are foreseen in the framework of WP3 and WP5. Project’s main expected results are the following: 1) creation of a network of universities and laboratories cooperating at the development and training of human capital, produced by the implementation of ILS's; 2) enhancement of accessibility for target groups to partners’ centres.
     

  • 2008 - 2011 Direct monitoring of strain for protection of historic textiles and... PL0267
    Kierownik: dr hab. Krzysztof Dzierżęga
    Źródło finansowania/Financial source: Mechanizm Finansowy Europejskiego Obszaru Gospodarczego
    Podsumowanie wyników projektu
    Opis projektu:

    Głównym celem projektu było wprowadzenie do konserwacji tkanin nowoczesnej i nieniszczącej metody detekcji ich zagrożeń fizyczno-mechanicznych wykorzystującej czujniki światłowodowe z tak zwanymi siatkami Bragga (SSB).
    Powstały system pomiarowy pozwala w sposób bezpośredni, precyzyjny i lokalny śledzić odkształcenia i deformacje zabytkowych tkanin i podobrazi w rzeczywistych warunkach ekspozycji, przechowywania i transportu. Co ważne, sposób  integracji samej głowicy czujnika z obiektem, w większości przypadków, nie prowadzi do jakichkolwiek uszkodzeń obiektu ani w czasie jej montażu/demontażu ani w trakcie pomiarów, a także pozwala na wielokrotne użycie samej głowicy. Ponadto, system ten został zintegrowany z ogólnym systemem monitorowania środowiska jaki działa w muzeum. Umożliwia to obrazowanie wyników, analizę rejestrowanego sygnału w czasie rzeczywistym i powiązanie ewentualnych zagrożeń z czynnikami klimatycznymi.

    Przeprowadzone w ramach projektu badania pozwoliły na uzyskanie nowatorskich w skali światowej wyników, w szczególności osiągnięto następujące istotne efekty:



    • opracowano i wprowadzono do diagnostyki zagrożeń tekstylnych obiektów zabytkowych i podobrazi płóciennych nową metodę ilościowego i lokalnego pomiaru odkształceń, deformacji i uszkodzeń

    • powstała nowa wiedza, która już niedługo (publikacje wysłane do redakcji i w przygotowaniu) będzie przedmiotem publikacji w najlepszych czasopismach w dziedzinie badań nad konserwacją zabytków Studies in Conservation, pismach o ugruntowanej pozycji z dziedziny technologii pomiaru oraz prezentacji na międzynarodowych konferencjach z dziedzin fizyki, chemii i konserwacji

    • wyznaczone zostały ilościowe kryteria oceny różnych metod prewencji konserwatorskiej i ekspozycji tkanin

    • wyniki projektu otworzyły perspektywę lepszej opieki nad zabytkami poprzez podniesienie świadomości zagrożeń u opiekunów zabytków i konserwatorów

    • ilościowe określenie wartości bezpiecznych wahań wilgotności względnej otwarło perspektywę optymalizacji zarządzania kontrolą klimatu w muzeach a tym samym oszczędności energii i zmniejszenia emisji dwutlenku węgla

    • wskazanie silnej zależności między zawartością lotnych substancji organicznych, będących produktem degradacji jedwabiu a prędkością degradacji, postawiło kilka znaków zapytania nad zasadnością wykorzystania atmosfery beztlenowej do ochrony jedwabnych obiektów
  • 1998 - 2010 Laboratorium Krakowsko-Berkeleyowskie L-K-B
    Kierownik: -
    Źródło finansowania/Financial source: -
    Opis projektu:

    Od 1998 roku fizycy z Uniwersytetu Kalifornijskiego w Berkeley (UCB) oraz Uniwersytetu Jagiellońskiego w Krakowie (UJ) współpracują w łączonych projektach badawczych w zakresie fizyki atomowej i fotoniki. Współpraca obfituje w wymiany studentów i pracowników naukowych. Grupa prof. Dmitry Budkera z UCB, wraz z grupą prof. Wojciecha Gawlika otrzymały szereg międzynarodowych grantów na prowadzenie wspólnych badań. Dotychczasowa współpraca zaoowocowała wieloma publikacjami nauowkymi oraz wymianą doświadczeń i know-how pomiędzy pracownikami, doktorantami i studentami obu uniwersytetów.

Projekty krajowe/National projects

  • 2021 - 2025 Poszukiwania ultralekkiej ciemnej materii 2020/39/B/ST2/01524
    Kierownik: dr hab. Szymon Pustelny
    Źródło finansowania/Financial source: Narodowe Centrum Nauki
    Opis projektu:

    While a number of astronomical observations suggest existence of matter that neither emits, nor absorbs, nor scatters
    electromagnetic radiation, all to-date attempts to directly capture its existence have been unsuccessful. This led to a
    significant increase of competing models perdicting new dark-matter (DM) candidates and means of its interaction with
    ordinary matter. A particularly interesting DM constituent would be ultralight bosons (ULBs).
    Due to their extremely low mass (<<1 eV/c2, where c is the speed of light), ULBs should behave differently than other
    DM candidates. In fact, they would manifest as coherent ultralight fields (ULFs) with a high mode-occupation number,
    but not as individual particles. This feature must be reflected in ULB search strategies. To address this fact, we propose
    to exploit techniques of modern atomic physics and use one of the most sensitive quantum sensors known today –
    atomic magnetometers – as tools to search for those particles.

    The operation principle of an atomic magnetometer is based on the measurement of the spin state of atoms
    constituting its active medium, which typically is an alkali-metal atomic vapor. Although an atomic spin state is most
    prominently affected by the magnetic field, atomic magnetometers are generally sensitive to other spin couplings, too.
    In principle, they can be used to search for DM, assuming that it exhibits such a coupling.
    This project aims at searching for DM characterized with so-called pseudoscalar spin coupling. Such a coupling is
    expected of ULBs, if the corresponding field is spatially or temporarily inhomogeneous. Therefore, we propose to use
    atomic magnetometers to search for so-called wavy and clumpy DM. The first type of DM is oscillatory in nature and it
    would give rise to effects, manifesting as temporal oscillations in observed signals. The source of such oscillations could
    be, for example, various modes of the bosonic field, that we encounter as Earth moves through space. Alternatively,
    such oscillatory behavior could be observed when a burst of ULBs generated in a cataclysmic astrophysical events (e.g.,
    supernovae, black-hole merge, neutrino-star merger, fast radio burst), passes though Earth. This also opens means for
    further embracing capabilities of multrimessanger astronomy, with “exotic physics” channel. The second type of DM
    could be generated either due to self-interaction or gravity or due to phase transition of primordial boson field. In this
    case, a sensitive experiment would detect an DM interaction as a short exotic pulse, when Earth collides with DM stars
    or ULF domain wall.

    To increase the capabilities of DM searches using atomic magnetometers, we propose to embed the devices in a
    network. Such a network, existing in the form of the Global Network of Optical Magnetometers for Exotic physics
    searches (GNOME), have already demonstrated its capabilities by proving that the search sensitivity can be increased by
    a factor of N_s^(1/2), where N_s is the number of sensors in the network. It also reduced a false-positive rate by
    performing consistency checks based on specific spatio-temporal pattern of signals time and amplitudes in specific
    locations. We propose to further improve the capabilities of the network by studying, both theoretically and
    experimentally, the so-called advanced GNOME sensor with reduced magnetic sensitivity and thus enhanced sensitivity
    to the other spin couplings. With the development of the magnetometer, we plan to investigate models that have not
    been explored to date. In particular, we will be investigating models predicting the existence of domain walls of ULFs,
    DM stars, stochastic fluctuations of the randomized ULFs, and emission of ULFs during violent astronomical events. To
    test the models, regardless of theoretical and experimental investigations already discussed, we will work on methods
    of data analysis. We plan to analyze the data using already known techniques (e.g., Fourier transform, excess-power
    analysis), as well as develop techniques that have never been applied in this context (cyclostationarity, multi-node
    correlation). Based on them, we will be able to either sample the parameter space of unexplored models or significantly
    enhanced previous research.

     
    We are certain that with this research we will be able to significantly contribute to the field of DM searches and, in the
    most conservative scenario, limit the parameter space of the DM-candidates described above.

  • 2020 - 2024 Nieniszcząca tomografia stanu kwantowego i pomiar oddziaływań... 2019/34/E/ST2/00440
    Kierownik: dr hab. Szymon Pustelny
    Źródło finansowania/Financial source: Narodowe Centrum Nauki
    Opis projektu:

    Understanding laws of physics, governing the world at a microscopic level, is one of the main drives of modern
    science and stimuli for develpment of quantum cryptography, computation, and engineering. Two crucial
    ingredients of most of quantum-information systems are the information carrier and the processor. Due to its
    robustness to environmental perturbation, photon is often considered as the carrier, but an optimal system for
    the processor is yet to be identified. One of the potential platform for that are atoms, so that light-“atom”
    interaction is a promising framework for quantum-information applications.

    Most of the systems hitherto developed for quantum-computation purposes has been complicated and bulky.
    This originates from the necessity of detecting and manipulating single quantum objects. Application of
    volumetric systems with a large number of parties has been also considered. A particular example of such a
    system are hot and cold atomic vapors. While ultra-cold atoms have been explored for the application, this
    medium does not solve the above-mentioned problem. The alternative are room-temperature atomic vapors,
    which are easy to handle and deal with. The problem of limited lifetime of quantum states in such media can
    be also overcome. Despite those advantages, however, an open question regarding the system is:
    Are hot atomic vapors "quantum enough" to be useful in quantum-computation applications?
    The main concern is to what extent the systems containing 10^9 atoms can be treated as a single quantummechanical
    object. Fundamentally, it cannot, as, for example, absorption of a single photon, rather than
    causing change of a single-atom internal state, generates entangled state of all the particles in the medium.
    Still, can tehy mimic such systems in a limitted way? There are other pressing questions regarding the vapor,
    for example:

    What is the role of inhomogeneous broadening and how far it compromises the “quantumness” of the medium?
    We will first tackle the question theoretically. By comparison between Landau’s single-particle density matrix
    and von Neumann’s collective density matrix, we will investigate the deviations of the two approaches, starting
    from low-number systems and successively enlarging them. With Monte-Carlo simulations, we will also
    investigate the role of the inhomogeneous broadening in the quantum-dynamics of the system.
    Simultaneously, with the theoretical investigations, we will construct the experimental setup for quantum-state
    tomography of a hot atomic vapor. The system will be based on light-atom interaction, where light will be used
    to prepare and monitor the quantum state of the system. The tomography will be done using weak continuous
    measurements (negligible back action). The polarization state of off-resonance probe light will provide
    information about optical properties of the medium and hence specific elements of the collective density matrix.
    To provide access to other elements, magnetic field, mixing the elements together, will be applied at the
    detection stage. In such a way, the full density matrix will be reconstructed. Completion of the task will require
    development of a theoretical treatment relating all density-matrix element of multilevel-structure with physical
    observables.

    Development of the reliable tomography technique will allow us to perform research on quantum manipulation.
    The system will be manipulated using static and oscillating magnetic fields. The fields will be appropriately
    tuned, timed, and oriented to controllably change the state of the system. In particular, we will demonstrate the
    ability to negate the system or perform Hadamard-gate operation. Next, we will explore more complicated
    operations, by selectively coupling ground-state magnetic sublevels, to fully demonstrate the capabilities of the
    system. Finally, we will demonstrate transfer of a quantum state between two hyperfine states.
    The envisioned studies will also allow us to study the spin dynamics of the system. By implementing pulsed
    optical pumping, special multipass cells, and dedicated data-processing algorithms, we will construct a
    magnetometer free from systematic errors, offering good temporal resolution.

    Realization of the project will provide theoretical and experimental tools enabling manipulation and tomography
    of a collective quantum state of hot atomic vapor and showto which extent the systems can be used in quantum-information purposes.

  • 2022 - 2024 Struktura rozproszonego optycznego zegara atomowego dla... "Polska metrologia", PM/SP/0040/2021/1
    Kierownik: UJ: dr hab. tomasz Kawalec
    Źródło finansowania/Financial source: Ministerstwo Edukacji i Nauki
    Opis projektu:

    Optyczne zegary atomowe nie są komercyjnie dostępne i funkcjonują obecnie jedynie w kilku zaawansowanych laboratoriach metrologicznych na świecie. Dzięki wysiłkowi kilku instytucji naukowych tworzących Krajowe Laboratorium Fizyki Atomowej i Molekularnej (KL FAMO) zlokalizowane w Instytucie Fizyki na Wydziale Fizyki, Astronomii i Informatyki Stosowanej UMK dwa takie zegary wykorzystujące atomy 88Sr funkcjonują też w Polsce. Ich dostępność, zwłaszcza dla zastosowań metrologicznych, jest jednak ograniczona, ze względu na fakt, że prace z wykorzystaniem zegarów POZA muszą być prowadzone w KL FAMO. Niniejsza koncepcja rozproszonego zegara optycznego stwarza szansę na dramatyczną poprawę tej sytuacji.

    W KL FAMO częstotliwość wzorcowa generowana przez optyczny zegar atomowy (długość fali ok. 700 nm), zostanie, poprzez optyczny grzebień częstotliwości, przeniesiona do okna transmisyjnego światłowodu (ok. 1550 nm). Lokalny oscylator optyczny, stabilizowany do wysokiej jakości wnęki optycznej, zapewni stabilność krótkoczasową sygnału w podczerwieni. Wykorzystane zostaną łącza światłowodowe wyposażone w regeneracyjne stacje laserowe oraz dwukierunkowe wzmacniacze optyczne, udostępnione na potrzeby projektu przez Poznańskie Centrum Superkomputerowo-Sieciowe. Dzięki temu utworzona zostanie pętla o długości kilkuset km, przez którą wzorcowy sygnał optyczny wróci do KL FAMO, gdzie trafi do zdalnego terminala optycznego zegara atomowego. Terminal ten, wyposażony w bardzo podobny oscylator lokalny, będzie korzystał z sygnału przesłanego przez stabilizowane fazowo łącze światłowodowe. Wykorzystanie łącza światłowodowego w formie pętli pozwoli testować jakość transmisji sygnału wzorcowego w KL FAMO.

    Wymiernym efektem projektu będzie konkretne rozwiązanie, możliwe do wdrożenia jako system transferu wzorcowej częstotliwości optycznej pomiędzy KL FAMO a kampusem GUM w Kielcach. Ponadto wypracowane metody można będzie wykorzystać do ogólnokrajowego systemu przesyłania sygnału zegara POZA (lub innego zegara optycznego) do innych punktów, realizując w ten sposób koncepcję ogólnopolskiego rozproszonego optycznego zegara atomowego.

  • 2019 - 2023 QUNNA: Quantum-effect-based Nanosensing and imaging: Novel glass-... TEAM-NET POIR.04.04.00-00-1644/18
    Kierownik: prof. dr hab. Wojciech Gawlik
    Źródło finansowania/Financial source: Fundacja na rzecz Nauki Polskiej
    Opis projektu:
    Celem projektu jest zastosowanie zjawisk z zakresu fizyki kwantowej do wdrożenia technologii opartej o wykorzystanie nanodiamentów do opracowania innowacyjnych sensorów znajdujących zastosowanie w badaniach optycznych oraz magnetycznych, elektronice oraz diagnostyce medycznej. Projekt ten realizowany będzie przez interdyscyplinarne konsorcjum, w skład którego wchodzą Uniwersytet Warszawski (lider), Uniwersytet Jagielloński, Politechnika Gdańska oraz Instytut Biotechnologii i Medycyny Molekularnej. Synergia czterech zespołów naukowych pozwoli na rozwój technologicznych platform z planarnymi matrycami szklanymi i strukturyzowanymi światłowodami z odpowiednio zorientowanymi defektami kwantowymi w diamencie. Umożliwi to wykorzystanie nieliniowej fotoniki oraz oddziaływań nano-magnetycznych do badania aktywności biologicznej. To nowatorskie połączenie metod nano-foto-magnetyczno-biologicznych, umożliwi lepsze poznanie i rozwinięcie możliwości spektroskopii, obrazowania i technik ultraszybkich wykorzystujących światło. Opracowane rozwiązania optoelektroniczne będą wdrażone do gospodarki i posłużą m.in. do diagnozowania chorób neurodegeneracyjnych i nowotworowych. 
  • 2017 - 2021 Nowe urządzenia fotoniczne i kwantowe wykorzystujące nieliniowe i... 2016/21/B/ST7/01430
    Kierownik: prof. dr hab. Wojciech Gawlik
    Źródło finansowania/Financial source: NCN Opus 11
  • 2020 - 2021 Pomiary czasu relaksacji podłużnej w nanodiamentach z centrami... K/MNT/000150
    Kierownik: dr Mariusz Mrózek
    Źródło finansowania/Financial source: NCN
    Opis projektu:
    Celem projektu jest systematyczne zbadanie zjawiska relaksacji spinowej centrów barwnych azot-wakancja (NV-) w nanodiamentach, w zależności od koncentracji centrów barwnych, przyłączonego do nich związku chemicznego np. biotyny, a także natężenia pola magnetycznego.
     
    Centra barwne (NV-) w diamentach przyciągają uwagę coraz większej liczby ośrodków naukowo-badawczych. Centra takie mogą być traktowane jako quasi atomy umieszczone w sieci krystalicznej diamentu. Niezwykle ważną ich cechą jest posiadanie niezerowego spinu (S=1) w stanie podstawowym oraz możliwość jego kontroli przez pola optyczne (w zakresie widzialnym) i mikrofalowe (zakres GHz). Centra NV- charakteryzują się także bardzo małymi szerokościami linii spektralnych w szerokim zakresie temperatur. Najczęściej wykorzystywaną ich zaletą jest silna i stabilna fotoluminescencja czerwonego światła (637 nm). Mechanizm pompowania optycznego za pośrednictwem stanów singletowych umożliwia spinową polaryzację stanu podstawowego i obsadzenie podpoziomu o ms=0. W rezultacie natężenie fluorescencji odzwierciedla stopień spolaryzowania stanu podstawowego, co pozwala na obserwacje i wykorzystanie optycznie wykrywanego rezonansu magnetycznego (ODMR). Pozwala to na wiele atrakcyjnych zastosowań - od markerów w systemach biologicznych, poprzez qubity w układach informatyki kwantowej po czujniki pól elektrycznych i magnetycznych.
     
    W szczególności niezwykłe właściwości spinowe i optyczne centrów NV- wydają się idealne dla potrzeb magnetometrii w skali makro, mikro, jak i atomowej. Dla osiągnięcia dużej czułości wykorzystuje się diamenty o wysokiej gęstości centrów NV-, zaś dla uzyskania wysokiej rozdzielczości przestrzennej mogą być używane nanodiamenty zawierające pojedyncze centra - co będzie głównym tematem badawczym tego projektu.
  • 2016 - 2020 Nowe eksploracje wiązań w dwuatomowych molekułach van der Waalsa:... OPUS 9. UMO-2015/17/B/ST4/04016
    Kierownik: prof. dr hab. Jarosław Koperski
    Źródło finansowania/Financial source: Narodowe Centrum Nauki
    Opis projektu:

    Nowe eksploracje wiązań w dwuatomowych molekułach van der Waalsa: wysoko-rozdzielcza spektroskopia rotacyjna a zaawansowane obliczenia ab initio - w poszukiwaniu źródeł rozbieżności

    Projekt proponuje nowe doświadczalne badania rotacji (a więc efektu od rotujących jąder atomowych, mającego wpływ na oddziaływanie między atomami) w dwuatomowych molekułach vdW, prowadzone z wysoką zdolnością rozdzielczą, czyli taką, która pozwoli na zarejestrowanie najbardziej subtelnych energetycznych struktur molekularnych. Badania doświadczalne  wspomagane będą obliczeniami ab initio. Otrzymane wyniki przyczynią się do poznania właściwości wiązań molekularnych, umożliwią niekompletną klasyfikację potencjałów międzyatomowych podstawowych oraz nisko- i wysoko-wzbudzonych (rydergowskich) stanów elektronowych w molekułach tworzonych przez dwa atomy, które w stanie podstawowym mają całkowicie wypełnione powłoki elektronowe. 

    Wyniki projektu przyczynią się do zrozumienia i (być może) wyjaśnienia ciągle istniejącej dużej niezgodności potencjałów otrzymywanych doświadczalnie z potencjałami obliczanymi metodami ab initio. W założeniach projektu zakłada się, że nowe, precyzyjnie wyznaczone potencjały doświadczalne i wyniki nowych, zaawansowanych obliczeń ab initio opartych na metodach chemii kwantowej, stanowić będą wzajemnie stymulujące się źródła informacji prowadzące do pełnej klasyfikacji oddziaływań w molekułach vdW. Przyczynią się do interpretacji nieregularności potencjałów. Pomogą wprowadzić systematykę oddziaływań vdW, które można uporządkować biorąc pod uwagę rodzaj i stopień wzbudzenia oddziałujących atomów tworzących molekułę.

  • 2016 - 2020 Magnetyczny rezonans jądrowy w bardzo słabym a nawet zerowym polu... 2015/19/B/ST2/02129
    Kierownik: dr Szymon Pustelny
    Źródło finansowania/Financial source: Narodowe Centrum Nauki
    Opis projektu:

    Celem niniejsze projektu jest opracowanie nowej techniki pomiarów magnetycznego rezonansu
    jądrowego (MRJ) w bardzo słabym lub wprost zerowym polu magnetycznym. Zadaniem projektu
    jest jednak nie tylko opracowanie samej metody, ale również demonstracja szeregu jej zastosowań w
    pomiarach podstawowych w tym w poszukiwania wciąż nieodkrytych dalekozasięgowych
    niemagnetycznych sprzężeń spinowych oraz badaniach dynamiki i struktury molekularnej w
    warunkach eksperymentalnych nieosiągalnych dotychczas dla MRJ.

    Dotychczasowe badania przy wykorzystaniu MRJ prowadzone były w bardzo silnych polach
    magnetycznych (>1 T). Pomiary w takich polach implikowane były przez w przybliżeniu kwadratową
    zależnością amplitudy obserwowanych sygnałów od indukcji zewnętrznego pola magnetycznego.
    Jednocześnie sama specyfika pomiarów MRJ wymagała bardzo wysokiej jednorodności tych pól.
    Stawia to bardzo duże wymagania techniczne przed metodą, co komplikuje pomiary, a urządzenia, w
    których jest ona wykorzystywana czyni drogimi i niemobilnymi. Z tego też względu, idea pomiarów w
    dużo słabszych polach pozostawała w obszarze zainteresować społeczności MRJ od dłuższego czasu.
    Pomiary takie nie były jednak do niedawna możliwe.

    Wspomniana wyżej zależność amplituda sygnału MRJ – amplituda pola magnetycznego jest z jednej
    strony skutkiem zastosowania polaryzacji termicznej próbki (polaryzacja skaluje się liniowo z indukcją
    pola), z drugiej zaś strony z indukcyjną detekcją sygnałów MRJ (wyższe pole – szybsza precesja spinów
    – szybsza zmiana pola – wyższa czułość). Chcąc zatem prowadzić badania w ramach zeropolowego
    MRJ niezbędne jest rozwiązanie obu problemów. W ramach niniejszego projektu problemy te
    planujemy zaadresować przez (a) prepolaryzację próbki oraz (b) zastąpienie detekcji indukcyjnej
    magnetometrią optyczną. W układzie takim badana próbka początkowo podlegać będzie
    prepolaryzacji w polu magnesu stałego (2 T), a następnie pneumatycznego transportowana będzie do
    obszaru detekcyjnego, tj. obszaru zerowego pola magnetycznego. W taki sposób silne pole
    magnetyczne, które nie musimy być jednorodne, aplikowane jest do próbki podczas jej polaryzacji, zaś
    sam pomiar odbywają się w bardzo dobrze kontrolowanym słabym/zerowym polu magnetycznym.
    Podstawową zaletą spektroskopową MRJ jest istnienie przesunięcia chemicznego, które m.in. pozwala
    na badanie struktury i topologii molekuł. W zerowym polu magnetycznym przesunięcie chemiczne
    jednak znika. Tym niemniej sam MRJ nie tracie przez to swoich możliwości analitycznych, ponieważ
    w tak słabych polach dominującym staje się oddziaływanie typu J, będące oddziaływaniem spin
    jądrowy – spin jądrowy mediowanym przez elektron. To właśnie natura tego oddziaływania sprawia, że
    pomiar zeropolowego MRJ dostarcza bardzo istotnych informacji analitycznych o molekule.

    Bardzo ważnymi zaletami zeropolowego MRJ jest ultrawąska szerokość rejestrowanych rezonansów
    (rzędu 10 mHz) oraz rejestracja informacji o oddziaływaniu typu J pomiędzy wszystkimi jądrami
    jednocześnie. Umożliwia to uzyskanie bardzo precyzyjnej informacji o molekule np. detekcję zmian
    wewnątrzmolekularnych, pomiar zmian w oddziaływaniach międzymolekularnych (wywołanych
    m.in. przez zmianę czynników środowiskowych) czy wykrycie zmian wywołanych zewnętrznymi
    polami (np. polem magnetycznym czy hipotetycznym oddziaływaniem niemagnetycznym). W ramach
    projektu planujemy wykorzystać opracowaną technikę do badań strukturalnych, konformalnych i
    funkcjonalnych molekuł. W szczególności planujemy stworzyć „bibliotekę” widma zeropolowego
    MRJ pozwalającą na rozpoznawanie substancji chemicznych, w tym ciekłych materiałów
    wybuchowych. Planujemy w końcu podjąć szereg badań podstawowych w ramach fizyki
    (poszukiwania anomalnych sprzężeń spinowych) oraz chemii (pomiar przesunięcia chemicznego
    w zerowym polu magnetycznym). Warto w końcu zwrócić uwagę, że jedną z podstawowych zalet
    opracowanej metody będzie otwarcie nowych możliwości badań w ramach dobrze ukonstytuowanej
    techniki, jaką jest MRJ.